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Control System Objectives

Economic Incentive

Safety

Equipment Protection

Reduce variability

Increase efficiency

Ensure the stability of a process

o Elimination of routine

Definitions: System: It is a combination of components that act together and perform a certain
objective.

Plant: It is the machine of which a particular quantity or condition is to be controlled.

Process: Is defined as the changing or refining of raw materials that pass through or remain in a
liquid, gaseous, or slurry state to create end products.

Control: In process industries refers to the regulation of all aspects of the process. Precise control
of level, pH, oxygen, foam, nutrient, temperature, pressure and flow is important in many process
applications. Sensor: A measuring instrument, the most common measurements are of flow (F),
temperature (T), pressure (P), level (L), pH and composition (A, for analyzer). The sensor will
detect the value of the measured variable as a function of time.

Set point: The value at which the controlled parameter is to be maintained.

Controller: A device which receives a measurement of the process variable, compares with a set
point representing the desired control point, and adjusts its output to minimize the error between the
measurement and the set point.

Error Signal: The signal resulting from the difference between the set point reference signal and
the process variable feedback signal in a controller.

Feedback Control: A type of control whereby the controller receives a feedback signal
representing the condition of the controlled process variable, compares it to the set point, and
adjusts the controller output accordingly.

Steady-State: The condition when all process properties are constant with time, transient
responses having died out.

0O O O O O O

Transmitter: A device that converts a process measurement (pressure, flow, level, temperature,
etc.) into an electrical or pneumatic signal suitable for use by an indicating or control system.
Controlled variable: Process output which is to be maintained at a desired value by adjustment of
a process input.

Manipulated variable: Process input which is adjusted to maintain the controlled output at set
point.

Disturbance: A process input (other than the manipulated parameter) which affects the controlled
parameter.

Process Time Constant(z): Amount of time counted from the moment the variable starts to
respond that it takes the process variable to reach 63.2% of its total change.

Block diagram: It is relationship between the input and the output of the system. It is easier to
visualize the control system in terms of a block diagram.

Transfer Function: it is the ratio of the Laplace transform of output (response function) to the

Laplace transform of the input (driving force) under assumption that all initial conditions are zero
unless that given another value. e.g. the transfer function of the above block diagram is G (s) =
Y (5)/X(s)



Closed-loop control system: It is a feedback control system which the output signalshas a direct
effect upon the control action

Advantage: more accurate than the open-loop control system.

Disadvantages: (1) Complex and expensive (2) The stability is the major problem in closed-loop

controlsystem
Forward Path

Comparator
Set / Controlled
Actuator Process variable
Controller » > _
(meten @rm) (position)
Y
Feedback Sensor

(potentiometer)

Open-loop control system: It is a control system in which the output has no effect upon the control
action. (The output is neither measured nor fed back for comparison with the input).

Actuator
Set 1 Controller ~| (final control |—| Process Controlled
point element) variable

Advantages: (1) Simple construction and ease of maintenance. (2) Less expensive than closed-loop
control system. (3) There is no stability problem.

Disadvantages: (1) Disturbance and change in calibration cause errors; and output may be different
from what is desired. (2) To maintain the required quality in the output, recalibration is necessary
from time to time Note: any control system which operates on a time basis is open-loop control
system, e.g. washing machine, traffic light ...etc.

The transfer function: The dynamic behavior of the system is described by transfer function (T.F)
T.F=Laplace transform of the output (response)/Laplace transform of the input (forcing function
disturbance)



T.F=G(s)=y(s)/x(s) This definition is applied to linear systems
Development of T.F for first order system:

Mercury Thermometer: It is a measuring device used to measure the temperature of a
stream.Consider a mercury in glass thermometer to be located in a flowing stream of fluid for
which the temperature x varies with time. The object is to calculate the time variation of the
thermometer reading y for a particular change of x

The following assumptions will be used in this analysis:-

1. All the resistance to heat transfer resides in the film surrounding the bulb (i.e., the resistance
offered by the glass and mercury is neglected).

2. All the thermal capacity is in the mercury. Furthermore, at any instant the mercury assumes a
uniform temperature throughout.

3. The glass wall containing the mercury does not expand or contract during the transient response.
It is assumed that the thermometer is initially at steady state. This means that, before time zero,
there is no change in temperature with time. At time zero the thermometer will be subjected to
some change in the surrounding temperature x(t). (i.e at t<0 , x(t)= y(t) =constant there is no change

in temperature with time). At t=0 there is a change in the surrounding temperature X(t)

x=surrounding _ ——_ Film resistance
temperature 7,
/ Mercury

Glass wall

Unsteady state energy balance:
Input-output=accumulation
Output=0

Input=hA(x-y)
Accumulation=d/dt mcp(y-yy¢r)
hA(x-y)= d/dt mcp(y-yyer)
hA(X-y)=dy/dtmcp ....... 1

Yrer =0

1storder differential equation

Where
A: area of the bulb



Cp: heat capacity of mercury
m: mass of mercury in the bulb
t: time

h: film heat transfer coefficient h depend on the flow rate and properties of the surrounding fluid
and the dimension of the bulb. The dynamic behavior must be defined by a deviation variables.

At steady state (s.s.) , t<0, x(t)=constant=xs,
y(t)=constant=ys

X(t)=constant=xs

accumulation = m Cp dy/dt=0 at steady state

hAGe, — 7)=0......2

hA(X-x,)-hA(y-y,)= dy/dt mcp

X-xs=X, y-y,=Y differentiate dy/dt=dY/dt
hAX-hAY=mcp dY/dt take laplace transformation
hAX(s)-hAY(s)=mcp s Y(s)

hAX(s)= Y(s)(mcps+hA)

output Y(s) hA _ 1 _ k
mcp

input X(s) hA+mcps 1+=-s C1+7s

Q1 system consist of level tank output flow rate is directly propotional to its level drive transfer
function relating out put flow rate to input flowrate and also drive transfer function relating its level
to in put flowrate

M.B in unsteady state

d
Api-doP =7; (hAp) .......1

M.B at steady state

(GisQos) P=0...cvveee . 2
eql-eq2



dqo A

(q; — qis) P-(90 — Qos) P= dt K p
do=kh . Q, =KH
dq aqQ
do — CIos:QO’ dto — 0= dto
q; — qis=0;
aQo_,, aH
dt dt

_ dQ,A
Qi p-Q, P—P%?
Take laplace transformation

Qi(S) 6 - Qo(9) 1= [ Q)5 = €, (0)] ¢

Q,(0)=0

Qi(S) 0 - Qo(8) 1=Qu (S)s %
Qi(S)= Qo (8)s % + Qo (S)
Qi(8)= Qo(9)(1+% )

1
G(s _QO(S):
(5) Qi(s) (1+%s)

,ézr,kzl
K

drive transfer function relating its level to input flow rate

M.B in unsteady state

APi-Gop == (WAP) .....1

M.B at steady state



(GisGos) P=0..occvveerrn... 2

eql-eq2

dqe, A
dt K

(q: — qis) P-(qo — qos) P= p

q0:kh ) Qo = KH

dqo dQo

QO_QOs:Qo; dt —0= dt

qi — qis=0Q;
aQo_, dH

dt dt

dt K

Qi p=Qp = p

dH
Qip— kH = pA
Take laplace transformation
Q; (s)p — kH(s)p=pA(H(s)s + H(0))
Qi (s) = Hlk + As]

Hs_ 1 _1/k
0 [k+As] 1+s%

G(s)=

_A—
t—k,k—l/k



Response of first order systems in series

Many physical systems can be represented by several first-order processes connected
in series as shown n figure:-
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Figure 5.1 Two-tank liquid-level system: (@) Non-interacting; () interacting.

h
In fig (5.1 a) variation of /1, does not effect on ¢, then ¢, = !
1

R,
h,—h,
R

In fig (5.1 b) variation of /7, does effect on ¢, then ¢, =

1

1-Non Interacting System

Material balance on tank 1 gives g()
Iy

d7 A
Era P

q;

Ats.s. dic — hi — ‘41 dhls -0 _——1_?
R, dt |

By substracting both equations

- h —h d(h,—h,_)
(‘ g )= 1 Is _ A ! ls
qr qrs) Rl 1 df

H,

dH i
= 4_—1 > b
[O; R, ldI] Ry qz



RO, = H) + R4 o
dr

Hi(s) R

where 1, = 4 R,

O.(s) 15+]1

Material balance on tank 2 gives

A
R, R, di
/ h, 1h,
Ats.s, &2 ZA; s
R, R, dt

By substracting both equations

R, R, ) dt
H, H dH
R, R, dt
{H') R')
.’12’}—\{2( = _Hz :—_Hl
dt R
R,
TQ.S‘HQ(SJ+H2(5'):?‘le’6') T, =R,H,

1

(T,s8 +'1)H;(S,‘:£H1(S)
2 R,

Hy(s)= ﬁHl(s ) By substituting the lapace transform of H,(s)
T,5 +

R, /R R
Hy(s)=—2"Lx0Q,(s)—2
(1,5 +1) T8 +1

R,

Oi(s)

_(tlerlthszrl)

Non-interacting system

In the case of three non-interacting tanks m sereies the transfer function of the system



will be as below:-

Hi(s) R,

O.(s) _(t15+1)(r25—l)r’T33+1)

Example:

Two non-interacting tanks are connected in series as shown in Fig. 5.1 . The time
constants are 7, =1 and 1, =0.5; R ,=1. Sketch the response of the level in tank 2 if a
unit-step change is made in the mlet flow rate to tank 1.

Solution:

The transfer function for this system is found directly from Equation above thus

g (1)
. .R') . 4‘11
H,(s)= = (s }
2(5/ _(rl,S‘Jrl)Hr’Tz.S‘+1)Qr / _ V/
Substituting Q.('s )':1 Unit step change in Q; _ ?1 )
s
. R 1
H,(s)= =2 ——
(Tis+1)(tys+1)s
Zoy By T2 qt
s (ts+l) (15+1) -
Ry=o,(ts+1)(t,5+1)+os(1,8 +1)+a,s(15+1)
lets=0 = a,=R,
1 1 1, . T 1. T, =T, .
T T T T T
2
T .
Loy =R, (——)
L0
1 1 1 . 1 -1,
T2 T2 Ty 0T 15
2
T .
Loy, =R, (—2—)
LT
R L 1 2 1
Hy(s)=—2+R,(—1—) -+R, (—%—) _
s T, T (T5+1) Ty =T, (T,5+1)
T, o 1 5T, T, 1

1
H,(s)=R,[—+( : —
? 2[.5' T, T T, (Ts+l) T -1, T (Ts+l)

7T, 1 1 T,T, 1 1

. 1 .
Hy(s)=R,[——( — +( )— _
2(5/ 2[5' "tl—rz)‘cz(s-—kl/rl) T -1, T (s+1/1,)

0T, )(ie—rfrl _le—a‘f.@ ))
T

0L-T 2 1

H,(1) =R, (1-(



5
Hz{HZI—{LJ{e_‘Z‘f—h?_r)
-0.5

10 —‘___,..-l-"'"
HZ(IJZI—(’_EI—z{?_I) 0119 tﬂllk ’f”—-
R \/’
Hi(s)= IL _l.QI-(S) ,/ H> (1)
TS+ Hi(t) »
R 1 =
H/(s)= — 2 05 ;’ Two tanks
;8 +1 s ’r
Hi(t)=Ry(1-e"'") /
/
Substitute R;=1 !1
Hi(t)=l1-e"%) /

U 1 1 1
=1 0 i 2 3

2.Interacting System

Material balance on 1%tank
7 q (1) A
/ ﬁ
7~ = A171 /
r ____“_—_ 42
q; — =4 1 —
R dt ! e
R, 9 —" | R
Steady state X 2 9
q
g - g, —hy, 4 dh,, 0 1
R dt

By substracting both equations

( i~ Yis ) — + =
) R dr
H, Hl a’Hl
+—= +4 % R
[O; 2 - A —] i

1 1

dH
O;R+H,=H, +A1R1d—r1




dH
Tld—fl-l_Hl =Q.R + H,

(t)s + DH,(s)=RO,(s)+ Hy(s)

R N |
Hi(s)=—1—0(s)+————H,(s
)= SOt e RO (1)

Material balance on second tank

R, R,
'L}]S - }FEJ . ]1}25 dhls

=4, =0
R, R, T dt
H H, H, dH
[ oy 2y x R,
R, R R codr
dH R,
dt - R -
R,
(rgs—lezrs):?(HI(,s)—Hzrs)) .............. (2)

1

Substituting for H;(s)from eq(1) in eq(2)
(rzs—IJHer)zﬁ[igrw+¥ﬂ#5)—Ha(S)]

R, (ts+1) (tys+1) ° }

R,0.(s) R, H,(s R, _
Lm+—2#”——‘bﬂ,(.s)] x(1ys+1)
(ts+1) R (ts+1l) Ry ~

™ & )

[(Tys+1)H,(s)=



R s+1)R,
(Tzf‘_1)(T1-9+UH2(-”:RgQi(-H—R—EHE(’M—W—J-

1 1

H,(s)]

TR,

(rlrzs’} + TS+ T +1)H,(5)+ H,(s5)=R,0(5)

1
R, ARR,

Let ——2 =~ = 4R, =1y
R R

(17,8 +(T, + T, +T, Js +1)H,(5s)=R,0,(s)

R,

2
T TS  +(T +Tr + T Js+1

0Oi(5) Interacting system

H,y(s)= Ry O:(s)

Non- Interacting system

T1T36'2 +(T + 1,5 +1

The difference between the transfer function for the non-interacting system, and that for the
interacting system, is the presence of the cross-product term A1Rzin the coefficient of s. t1=A1R1

Example:
To understand the effect of interaction on the transient response of a system, consider

a two-tank system for which the time constants are equal (7;=1,=1).
T1 = T2 —T12—T
Q,(t)=? Output flow rate
Q.(s)= l
5
Solution:
Non-interacting system

Hy(s) R, =
O.(s) T1T25'2+(T1+T2)5'+1 b
Hyls) _ — & but Q;(SJ:HEHJ
Of(s) 175 +2tw5+1 ) R,
Oy(s) _ 1 3 1 iy I
O.(s) s? 4 2ts+1 (ts+l)(ts+1)  ts+1
Ifg_)frs;}:i

S



1 1 « a o,
)(s)=——5 —=—2+ 1L 2
<2 (ts+1)%s s (1:5+'1)2 s +1

By multiplying both sides by s(ts +1)”and expanding, we get
o, (ts+1)° +as+o,s(ts+1)=1
o, (T°s> +2ts+ 1) +as+a,(ts +5)=1

s (ot +o,T)+s(2to, to, o, ) ta, =1

s =a,=1
s’ = o, +o, =021t +a,1=02 0, =—1
s! = 20,1+0;, to,=0=22t+a;, —1t=0=0,=-1
1
Q',Z(S):__ T_ 7 -
s (ts+1)7 1w+l
1 T T
h(s)=—— -
< s (‘ES+1)2 s + 1
I 1 1 1
Q).Z{S):___ PR /
s T(s+1/t)7 s+l1/1

for non-interacting

Interacting system
If the tanks are interacting, the overall transfer function, according to Equation of
interacting system (assuming further that 4,=4,)

11

s’ 43w +1 s

By application of the quadratic formula, the denominator of this transfer function can
be written as

Oy(s)=

1 1
Os(s)=— )
s(038ts+1)(2.62ts +1)
0,(s)= e+ % %

+ +
s 038ts+1 2.621s+1
let s=0>a, =1

let 5 =—

= o, =—0.381 7 =0.06641
2.62t(— )+1
38t

0.387

let s =~ > a; =-2.62t =-3.6641

0.387(— )+1

2t

621

A4



1 0.0664t  3.0664t
Ox(s5)=—+— -
s 038ts+1 2.621ts+1
0,(s)= L4 0:06641/038r _3.0664t/2.62c
2 s+1/0.387 s+1/2.62t
Qz(.s):lJr 0.17 B 1.17

s s+1/038c s+1/2.6271

0,(1)=1+0.17¢7/°3" —1.17¢77/ 22

08f Q=ut) [ 1 | 1 0
T+l T5+1

(.6

Noninteracting

Q10

- Interacting

0.4

- -
2.62t5+1

. 1
0.2+ 0= vl 538041

0 | | |
0 1 2 1

Figure: Effect of interaction on step response of two tank system.

Q System consist of two identical non interacting level tank that connected in series output flow
rate from each tank is directly proportional to square root of its level drive system transfer function
relating output flow rate to input flow rate

M.B in unsteady state
d

api-4op =; (hAp)

- k\/_ 1q0
4iP-GoP=2L R?A p

dq,

qi-qo=2R*A p =12
dig=pp2pfde
do dt

Linerazation &

do



=z; +dzg

q“+(— Q;-1£.0,) sub in 1

dos Yos os

QL5+(_ Ql Q;s O)-l:ZRZAp% ........ 2

dos dos dos
do — qos:QO
dqo —0= on

M.B at steady state

4is — qOS:O
dis_1=0....3
dos

Eg2-eq3

LS dQO
q_osQl qos Qo ZRZAP

Take laplace transformation

2 Q(s )2 > Qo (5)=2R*A pQo (5)s

dos

—Q;(s) =& 2 Qo()+2R*A pQ,(s)s

Qos
1 is
—Qi(s) = Qo(s)(j—gs + 2R*A )

dos

Qo(S)_ 1/q, _ dis

Qi(s) disiop2as 2AR%q3
2 1+—=¢
9os dis

G1(s)= for the first tank

2AR%g3. . .. .
K:ZI"S,F - dos similarity for the second tank
is is




dis

G2(s)= —1%
=
G(s)= G1(s). G2(s)
dos q1s
— i dos
 G(s)= oyl 242
1+M5 1+M5
dis dos

Q level tank system of 4 m? area in which the out let flow rate is proportional to level square root is
at steady state when g,=q;=8m3/minand h=4 drive system transfer function relating its level to
input flow rate

M.B in unsteady state
d
qiP-q0P :& (hAp) .......1
qo=KVh,h-h H — = k—
d
qpi-kVhp = (hAp)
Linearization z
Z=Zs + dzg
zs=khy'?, dzy=kh;/*H

i — ( khl/z 1kh—1/2H)_ — (Ap).z

M.B at steady state
dis — qos:0
dis — kh;/zz()....ﬁ

Eq 2-eq 3



(q; — qis)— —kh 1/ 2H-—A take Laplace transformation

Qi ) —-kn*His) = A(H(s)s + H(0))

Qi o= Hs)(As+kn'?)

H(s) _ 1 1/A

. 1, .-1/2" , 1,.-1/2
Qi () As+:khg S+5khg 7S

G(s)=

K=1/Ar=—kh'/*  q,=kVP. k—%k

“V2=142

Example: Mixing tank with chemical reaction
24—->B+C

: 2
Reaction Rate =r = —kc F. c
C(s)

G(s)=—2L="
Ci(s)

F.c

¢;.c : Composition of component (A)  [TTTTTETEET —>

V: Constant=L Vv
F: Constant=L/min 24—>B+C
Solution:

In - out - rate of reaction = accumulation

Fec, — Fc —Vke* = T(:;—C Un-steady state
I

2 2 o
¢ =c; +t2¢c,(c—c,)

Fe, —Fc—Vk[cl +2c,(c—c )]—Td—c
dt
Fe,, — =0 Steady state c=c;




d _
F{Ci _C}'.s}_F{C_CS)_I-I'[Zfsf’f'_fs }] :Iru

drt
.dC L .
|4 FJF (F +2Vke, )C =FC, +(F +2Vkc, )
1:£ +C=RC,
dt

Ist order system

Where C=c—c¢, , C.=c, —c,
T= I— , R L
F +2Vkc, F + 2Vkc,

Y=c—c,
X=F-F

where

[Vd—}+FSY=(C;_C.s)X] +
drt

Var y_(a=¢)y

F_ dt

5 5

Td—}+ Y=RY
dt

Q liquid flows continuously through a constant volume vessel so that input and output flow rate are
equal an electric heater supplies heating rate to the liquid a-drive transfer function relating outlet

temp to inlet temp

b- drive transfer function relating out let temp to mass flow rate

Y4



a-unsteady state M.B

mep(t; — £)-Mep(t, — £)+q=-- (Wpcp(t, — t,))....]
steady state balance

mcp(t;s — t,-)-mep(t,s — t,)+q=0........ 2

eq l-eq 2

dt,
me(ti T tis)'mcp(to _ tos)+q:E vpcp

dt,

ti — tis = T, ty — tos=T,, dt

_dT, :
= sub in eq
mcpT;-mcpT, +q:% vpcp take Laplace transformation
mepT; (S)-mepT, (S)=(T, (S)s + T, (0))vpcp

mcpT; (S)=mcpT,(S) + T,(S)svpcp

mepT;(S) = T, (S)(mep+vpcp)

_To(S)_ m _ 1
G(S)_Ti(S) _m+vp _%ps+1

B-un steady state balance
d
me(ti _ tr)-me(tO _ tr)+q:E (vpcp(to _ tr))----l
dt,
mcpt;-mept, +q=—"vpcp.. .1
linerazation
Z=mt,,Z;=mqt,;,dZ;=m(t, — t, )+ t,s(M-my) sub in eq
dt,
mcpti'(mstoscp + ms(to - tos)cp'l' tos(m'ms)cp ) +q:? vpcp----z
steady state M.B

myCpt;s-m.Cpt,+dq=0.....3



Eq2 —eq 3

dt
(m'ms) tis'ms (to — tos)' tos(m'ms)zvp d_L?

M=m-m,,T, = t, — t,;Sub in eq

dr,

Mt;s-msTo-tosM=vp dt

Take laplace transformation
M (S)tis'msTo (S)'tos M(S): vp (To (S)S'To (0))
M($) (tistos)= To (s)(vpstl)

(tis—tos)
G(S):To(s):(tis_tos): mg
M(s) vps+mg Zl—ps+1
s

Transfer function for multiple input

Q liquid flows continuously through a constant volume vessel so that input and output flow rate
are equal an electric heater supplies heating rate to the liquid a-drive transfer function relating outlet
temp to inlet temp and heating rate

unsteady state M.B

mep(t; = t)-Mep(to — ) +4=g; (WPCP(ty = t))....1
steady state balance

mcp(t;s — t,-)-mep(t,s — t,-)+qs=0........ 2

eql-eq?2

MCP(t; — ti5)-MCP(to — tos)+(G-s)="2 vpcp

mcpT;-mcp TO+Q:% vpcp

mepT; (s)-mep T, (s)+Q(s)= vpcp(T, (s)s + T,(0))

To (s)(mep+ vpceps)= T; (s)mep+ Q(S)

Y



Y(s)= T, (s),X(s)= T; (s)mep+ Q(s)

T, (s)— ,,p (T;(s)mcp+ Q(S), G(s)— ,,p if the q is cooling

me(ti - tr)'mcp(to - tr)'q:% (vpcp(to - tr))°°°

Ti(s) mep e
vp
Q(s) —> m > +1 —> Tols)

for more complex case drive transfer function relating out put temp to input temp ,mass flow rate
and heating rate

un steady state balance

mep(t; — t,)-mep(t, — t)+0==- (vpep(t, — t,))....
linerazation

Z=Mt,,Zs=Mstos,dZs=Ms (Lo — tos)t tos(M-my)
z1=mt;,Z1,=mt;;,dZ1,=m(t; — t;5)* t;s(M-my)
sub ineq

mstiscp + mscp(ti - tis) + tis(m - ms)cp) - mstoscp + ms(to - tos)cp+ tos(m'

_d(to
mg)Ccp+q= ” .

Steady sate balance
myCpt;s —-MmsCPt,ys+qs =0.....2

Eq 1-eg2

_d(to

mscp(ti - tis) + tis(m - ms)cp) - (ms(to - tos)cp"' tos(m'ms)cp)+ g= dt
dT,
mstTi + tisM'msTon - tosMCp'l'(q'CIs): U,DCPE

Take laplace transformation

Yy



mscpTi(s) + tisM(s)ep-msT, (s)cp — tosMep+Q=vpcpT, (s)s

mscpTi(s) + M(s)cp(tis — tos) + Q(s) = T, (s) (vpcpstmyscp)

T,(s) = (vpcps + mycp) mgcpTi(s) + M(s)cp(tis — tos) + Q(s)
1/m;g
T,(s) = vp/—mstTi(S) + M(s)ep(tis — tos) + Q(s)
(WS + 1)
mcp
Ti(s)
N Cp(tis - tos)
M(s — 1/mcp
—Up —>  To(s)
Q(S) RS +1

Home Work

Q 1system consist of two identical non interacting level that connected in series out put flow rate
from each tank is its level by the equation q=18 h?/2 drive system transfer function relating its
level to input flow rate.Liquid level in each tank 8 m the cross sectional of each tank 12 m?2,15
m2respectively

Q2 liquid at temperature ti flows in stirred tank cooling tank where its temp where drops to tlby
means of cooling water in coil with transfer rate g=UA(t; — t,,) the out let flows in the second
tank where its temp drops to t2 by means of an evaporating refrigeration a coil with transfer rate
g=mpgAg

Q3 water flows into constant —level stirred tank of 50 m3 volume and exit at the same volumetric
flow rate of 2 m3/min at steady state the tank is fitted with an electric cooler that operate at constant
rate to cool the water from 40 c to 10 c at steady state drive transfer function relating out let temp to
volumetric flow rate

Q4 the second order reaction 2A s B is carried out in CSTR find the transfer function relating
output concentration to input concentration

Yy



Q5 Two identical constant level stirred tank reactors are connected in series the reaction taking
place in each reactor is second order drive the system transfer function relating output reactant
concentration from second tank to A-input reactant concentration to first reactor

B-both of input reactant concentration and flow rate to first tank

: : : . . : aC
Q6 in continuous biochemical reactor the volumetric reaction rate r=B—+C drive the transfer

function relating out conc to inlet conc.

Response of first order system
1- Step
Y(8)=X(s)-G(s)

Ak = _a b

=——Lt—=—+ —a=Ak
S'Ts+1 s(s+—) s (s+;)

Y(s)=

:a(S+%)+bs

a=Ak,Ak+b=0,b=-Ak

s atb
sO =
MO
Y(s)= Ak(-' )

Y (t)=Ak(1-¢ )

To find extreme

Ak
s(ts+1)

Lim(0)=lim;—q y(t) = lims_q, S

Y¢



Y (o0)=lims—o, y(t)=lims_g s 2K Ak

S(TS+1)_
t
For Y (t)=Ak(1-e 7)
Y (0)=0 and Y (0)=Ak
» [L00% |k
E“ | & | 75%
=
N Y
o Lz b7
0 1 2 3 i 5 ]
Time ¢/
Example:

A thermometer having a time constant of 0.1 mun 1s at a steady state temperature of
90 F°. At time t = 0, the thermometer is placed in a temperature bath maintained at
100°F. Determine the time needed for the thermometer to read 98 F°.

Solution:
At s.s. x=v=90 F°

Step change X (5)= A
5
A=100-90=10
X(s)= 10
5
. 1 4 1 10 10 10 A B
Y(s)= - —

= _— = o = +
w+ls Ols+1s s(01ls+1) O0.lsfs+10) 0.1ls s+10
A(s+10)+B(0.1s )=10
s:O:‘»A:E:l
10
s=—10= B=-10
Y(s)= 1 10 :E_ 10
0.ls s+10 s s+10

Teo- w10 1. - Lo

1

el e

Yo



By taken laplace mverse for the equation
Y(t)=10-10e" =10(1—¢7'"" )
Substitute Y(t)=v(t)-y,=98-90

Y(1)=8
8=10/1—¢™")
0.8=1-¢'"
In(e™ ) =ne0.2)

—10t=In(0.2)
f=-In(0.2)x0.1
t=0.161 min

2-Ramp Response

Y (5)=X(s).G(s)

Ak
_A k _ T —ﬁ+2+%:a(s+1)+bS(S+l)+CSZ
S+; T T

T s2 'Ts+1_52(5+1) 52 s
T

1 1
=as+a- + bs? + bs ;+cs2

s (b+c)=0

S ate =0

T

1 Ak
s° a= = —= a=AkK
T T

Ak +2 =0
T
B=-Akt

-Akt+c=0
C=Akt

_Ak Akt | Akt

s2 s s+t
T

Y1



Ak

Y(0)=lim;—y y(t) = limg_e,S SZ(ST+1):O

Y Y Ak
Y (0)=lim;—q y(t) = limg_gy s iy "
Y(s)=2 A A

s2 s S4=
T

t

Y(t):Ak[t — T+ Te_?]

Y(0)=0,Y (o0)=0

Ramp Function, v(t)=ty(t)

Time
3-impluse
Y (s)= X(s).G(s)
Ak t
kK _— _Ak -t
Y(S)=A -—e T

Ts+1_5+1 T
T

To find extrems

Y (0)=lim;-, Y(t) = limg_, ST =L ——

s+1 5+l T
T

Y(0)= 25 Y (0)=0

4-sinsoidal response

Yv



W k
52 +w2 TTs+1

Y(s)=

_as+b
s24+w?2  1s+1

= (as + b)(ts + 1) + c(s?

=ats® + as + bts + b + cs? + cw?
s?  att+c=0

S atbt=0

s% b+cw?=Akw
B=Akw-cw?=a+(Akw-cw?)1=0
at+Akwt-ctw?=0

a= ctw? — Akwt

(ctw? — Akwt)T+¢c =0

(cw?t? — Akwt?) +¢c =0
C(1+w?7?) = AkT?w

_AkT?*w

T 14+w272
_ AkT?*w 2
=—— tw*-Akwt

1+w?272

AkT?w AkwTt
- TWZ'—1+W2T2
1+w2t2 1+w?2t2

_AkTZW 2 Akwt+Ak 2 .2
———— TW"™ — ————WTW"™T
1+w?272 1+w?27?
—Akwt
S 2,b AKw-cw?

a+bt=0,a=-bt b— b—

1+w rz

(—AkWT )S* Akw AkT?w
—\1+w272 ' 1+w212+ 1+w272
s2+w?2 Ts+1

[ -wT S w n wrz]
14+w272 [ s24+w?2 s24+w?2  1s+1

Y(s)=

+w?) =

YA



Y(s)=

t
= [ wtcoswt + sinwt + t2we T]

2 _ 2 4 a2 2 _ LI RS, ?
re=pt+qt,rt = \/(1+w212) (=wr)* + (1+w ‘cz) (1)
r=—2% VT +w2ri=—2K _ 9 = tan~1(—1w)

1+w272 V1i+w2z2
— Ak : -1/_
Y(t)= —msm[wt+tan (—tw)]
X=Asinwt

Amplitude ratio

Ak
AR:\/1+W2T2 — k
A Vi+w2g2

A X(t)

ANANS

A\

By comparing Eq. for the input forcing Y (t) function with Eq. for the ultimate periodic response
X(t), we see that 1. The output is a sine wave with a frequency w equal to that of the input signal. 2.
The ratio of output amplitude to input amplitude is 11122<t+w. 3. The output lags behind the input
by an angle o. It is clear that lag occurs, for the sign of ¢ is always negative.

©>1 phase lag
<1 phase load

Y4



Example:

A mercury thermometer having a time constant of 0.1 min 1s placed in a temperature
bath at 100°F and allowed to come to equilibrium with the bath. At time t= 0, the
temperature of the bath begins to vary sinusoidally about its average temperature of
100°F with an amplitude of 2°F If the frequency of oscillation is 10/7 cycles/min. plot
the ultimate response of the thermometer reading as a function of time. What 1s the
phase lag?

In terms of the symbols used in this chapter

1=0.1
<0 x, =v, =100
=0 x(1)=100+ 2sin(wrt )
10
f==
T
Solution
10 .
w=2a =27 x— =10 rad /min
T
T= L = 10 min/ cvcle

T
X(t)=x(t)—x, =100+ 2sin20f —100
X(t)=2sin20t
2x20
s°+20°
Ultimate response t >  then e =0

Lsm(w +d)]

V14wt

b=tan"(—wt)=tan ' (-20x0.1)=tan"'(-2)
»=-63.5°

Ultimate response at the above angle

sin( 20t —63.5)]

X(s)=

Y(t)=

Y(t)=

J1+(0.1x20)°



Y(1)=—2sin(20f - 63.5)]

Vs

Y(t)=0.8965sin(20f — 63.5)]

In general, the lag in units of time
1s given by:-

63.5 cycle m min
10 ¢cycle

phase lag =

=0.0555min

Ultimate response

lag=0.056 min

MIfp=—————————

oo pr——— e ——

][‘.ﬁ ] \\ i
! N g
91— ~f-

|
o0t —-4 — - temperature
; Thermometer
| temperature
I Transient N Ultimate periodic response .
1
1 Ab
g A
t min

10 cycle . 10, _- . .
A frequency of —=—means that a complete cycle occurs in (—) ! min. since cycle
T n T

i

is equivalent to 360°and lag is 63.5°

For a particular system for which the time constant T is a fixed quanfity,
it is seen from Eq. (5.25) that the attenuation of amplitude and the phase angle
¢ depend only on the frequency (, The attenuation and phase lag increase with
frequency. but the phase lag can never exceed 90° and approaches this value

asymptotically.

The sinusoidal response is interpreted in terms of the mercury thermometer

by the following example.

Example 52. A mercury thermometer having a time constant of 0.1 min is placed
in a temperature bath at 100°F and allowed to come to equilibrium with the bath. At
time ¢ = 0. the temperature of the bath begins fo vary sinusoidally about its average
temperature of 100°F with an amplitude of 2°F If the frequency of oscillation is 10/7
cycles/min, plot the ultimate response of the thermometer reading as a function of

time. What is the phase lag?

In terms of the symbols used in this chapter

T =01
Xy = 100°F
A= 2°F

f =

10 .
— cycles/min
m

R




10
w=2mwf = 211'—“_ = 20 rad/min

From Eq. (5.25), the amplitude of the response and the phase angle are cal-
culated: thus

A )

S+ 1 Ja+1
¢ = —tan! 2 = 635

= 0.896°F

or
Phase lag = 63.5°
The response of the thermometer is therefore
Y(t) = 0.896 sin (20t ~63.5°)
or
y(£) = 100 + 0.896 sin (20t = 63.5°)

To obtain the lag in terms of time rather than angle. we proceed as follows: A
frequency of 10/ cycles/min means that a complete cycle (peak® to peak) occurs in

(10!11-)‘1 min. Since one cycle is equivalent to 360" and the lag is 63.5°, the time
corresponding to this lag is

63.5 .
— X (time for 1 o|
ET (ime for 1 cycle)

or
L 60357 0.0555 m
ag = ———-— = 0.05535 mm
N 360 10
In general. the lag in units of time 1s given by
[¢]

Lag = 360f

when dy 1s expressed in degrees.

The response of the thermometer reading and the variation in bath temper-
ature are shown in Fig. 5.8. It should be noted that the response shown m this
figme holds only affer sufficient time has elapsed for the nonperiodic ferm of Eq.

(5.24) to become negligible. For all practical purposes this term becomes negli-
zible after a time equal to about 37. If the response were desired beginning from

the time the bath temperature begins to oscillate, it would be necessary to plot
the complete response as given by Eq. (5.24).

Homework

Q1 state the Laplace transformation and sketch the input and first order response curve for input
function given below

a-negative step of 20 units amplitude.

Y'Y



b-sinusoidal of 5 unit amplitude and 5 cycle /freq

c-ramp at 4 unit/sec delayed by 10 s.

d-step of 10 unit amplitude for 5 min than 10 units higher

e-impulse of 20 units amplitude returning to 10 units higher than the steady state .
Q2 state laplace transform and sketch both in put and first order system
a-sinusoidal of 8 units amp 4 cyc/sec

b-ramp at 8 unit delayed by 4 sec

Q3 state laplace transformation and sketch the curve

a-negative step of 20 units amp delayed by 10 sec

b- sinusoidal of 5 units amp and 5 sec period.

c-ramp at 4 units/sec for 10 sec than remains const at level reached

d- step of 20 units amplitude for 5min than 10 unit lower than that .

e-impulse of 20 units amplitude returning to level 10 units lower than the steady state.
f-negative impulse of 40 units returning to level lower the stady state .

Q4 state transfer function of the following disturbances and sketch the response first order
(k=2,1=10) negative ramp at 10 units for 20 sec then positive ramp at 5 units/sec

Translation of function

Time Delay The most commonly used model to describe the dynamics of chemical process is
First-Order Plus Model Delay Model. By proper choice t d, this model can be represent the
dynamics of many industrial processes.

« Time delay or dead time between inputs and outputs are very common industrial procsses,
engineering systems, economical, and biological systems.

« Transportation and measurement lags, analysis times, computation and communication lags.

Any delay in measuring, in controller action, in actuator operation, in computer computation, and
the like, is called transportation delay or dead time, and it always reduces the stability of a system

and limits the achievable time of the system.

Yy



The Transportation Lag

The transportation lag is the delay between the time an input signal is applied to a system and the
time the system reacts to that input signal. Transportation lags are common in industrial
applications. They are often called “dead time”.

x(1)

e

X (8)

Transportation Lag

X (t-7)

e =X(s)

Dead-Time Approximations:-

x(1) —
q

Cross-sectional area= A4

(

< I

gi(t) = Input to dead-time element. qo(t) = Output from dead-time element. The simplest dead-time
approximation can be obtained graphically or by physical representation.

The accuracy of this approxiamtion depends on the dead time being sufficicently small relative to
the rate of the change of the slope of qi(t). If gi(t) were a ramp (constant slope), the approximation
would be perfect for any value of td. When the slope of qi(t) varies rapidly, only smal ta’s will give
a good approximation. If the variation in x(t) were some arbitrary function, as shown in figure
below, the response y(t) at the end of the pipe would be identical with x(t) but again delayed by t

[ x(t)

Pl
/

/
l&/ tV(f)
/

/

T t

(b)

Figure Response of transportation lag to various inputs.
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Example: Thermal system

amr

‘ Temp Temp
Sensor 1 Sensor 2
o ! :
T_E
heater

If measured at T; this can be modelled as:

T(s) K

Vis) 1ts+1
Due to the delay time the temperature T, represented by:
T.,(s) Ke ¢

Vis) s+l

Example: Mixing tank with time delay.

F, C;
‘ IF, C1 F Co
F,V:Constants  |====—==—= >
V
c ( ............... }
Time delay !
Cy(s) s
Ci(s)

_ Volume of mube AL AL L

" Volumetric flowrate g Cud u
Ci(s) B R
Co(s) ts+1

.. Cz.(’s) _ Cg_(S_) « C1.(S_)
C(s) C(s) Cs)




LCols) _Ca(s) Cifs)
Ci(s) Cys) Cf(s)
Cyis) R .

T € 4 -
C(s) ts+1 Where

(Time Units)

SECOND-ORDER SYSTEM
Transfer Function

This section introduces a basic system called a second-order svsrern or a quadratic
Ing. A second-order transfer function will be developed by considering a classi-
cal example from mechanics. This is the damped wibrator, which is shown in
Fig. 8.1.

A block of mass Fresring on a horizontal, frictionless table is attached to a
linear spring. A viscous damper (dashpot) is also attached to the block. Assume
that the system is free to oscillate horizontally under the influence of a forcing
function F(t). The origin of the coordinate svstem is taken as the right edge of
the block when the spring is in the relaxed or unstretched condition. At tune zero.
the block is assumed to be at rest at this origin. * Positive directions for force and
displacement are indicated by the artrows in Fig. 8.1.

Consider the block at some instant when it is to the right of ¥ = 0 and
when it is moving toward the right (positive direction). Under these conditions,

—sF(t)

Ly FIGURE 8-1

Damped  vibrator.

the position Y and the velocity d¥/dt arc both positive. At this particular instant,
the following forces are acting on the block:

1.

19

93]

The force exerted by the spring (toward the left) of -KY where K is a positive
constant, called Hooke’s constant.

The wviscous friction force (acting to the left) of —C d¥/dr, where C is a positive
constant called the damping coefficient.

. The external force F(#) (acting toward the right).

Newton’s law of motion. which states that the sum of all forces acting on

the mass 1s equal to the rate of change of momentum (mass X acceleration), takes
the form

W d2Yy dy

- - = -KY - — + Fz .

go de? C a7 ) (8.1)
Rearrangement gives

W d2Y dY

- - + C— + KY = Fyt) 8.2

g dt? dr @2
where 7 = mass of block. 1lb,

ge = 32.2(1b,)(f0/(0by)(sec?)
C = wviscous damping coefficient, lbg/(ft/sec)
K — Hooke’s constant. 1bg/ft

Fy¢r) = driving force, a function of time, lby

Dividing Eq. (8.2) by K gives

1



_WwW d?y @ CdY | _ F@®

2K di? +f—(}r—+Y =X (8.3)
For convenience, this Is Wwritten as
d2y ady
2 T '
T + 27— + Y = X(v) 4
dr? T dr (8.4)
where
W
T = — (8.5)
gk
C
2T = e (8.6)
. F()
X = —— (8.7)
) K 8.7)

solving for 7 and £ from Eqs. (8.5) and (8.6) gives

f W
T = sec (8.8)
8K
& = g:C? dimensionless )
Vawk ' (8.9)

3v definition, both 7 and £ must be positive. The reason for introducing 7 and £
n the particular form shown in Eq. (8.4) will become clear when we discuss the
olution of Eq. (8.4) for particular forcing functions X77).

Equation (8.4) is written in a standard form that is widely used in control
heory. Notice that, because of superposition, A77) can be considered as a forcing
unction because it is proportional to the force Fz).

If the block is motionless (dY/dt = 0) and located at its rest position
(Y = 0) before the forcing function is applied, the Laplace transform of Eq.
(8.4) becomes

T2s2Y(sy + 2ZTsY(5) + v(s) = x(s) (8.10)
From this, the transfer function follows:
Yis) _ (8.11)

X(s) 71252 + 2LT1s + 1

The transfer tunction given by Eq. (8.11) is written in standard form. and

we shall show later that other physical systems can be represented by a transfer

function having the denominator 7252 + 2¢7s + 1. All such systems are defined

as second-order. Note that it requires two parameters, 7 and ¢, to characterize the

dynamics of a second-order system in contrast to only one parameter for a first-

order system. For the time being. the variables and parameters of Eq. (8.11) can

be interpreted in terms of the damped vibrator. We shall now discuss the response

of a second-order system to some of the common forcing functions, namely, step,
impulse. and sinusoidal.

kw?
2 l/ 2
s“+2'{ws+wy,

G(s)=

o un damped natural frequency

C the damping ratio

_—20wpt\4Pwi-4w?

For {>1 over damped
YV



(=1 critically damped

(<1 under damped

(=0 nodamped

Response of second order

1- Step change

A
X(s)="
_ k
Y(S)_1252+265‘c+1
k
12 A
_52+2—<s+i2 's
-2¢ 20\% 4 472 4
:Ti (7) 2_—¢ + 72 _1_—¢ + 2 52—1:—_5 + {%-1
2 T 2 T 2T T T
_ 2_ _ 2_
§1=f 4 ATt YT
T T T T
Y(s)= k/t?
_s(s—sl)(s—sz)
— k A_ao ais+a;
Y(S)_1252+2{sr+1 s s T252+2{st+1
s® a, = kA
st 2(t+a, =0, a, = —2kA (1
s?  a,t’+a,=0,a, = —kAT?
_ 1 t2s+20t
Y(S)_kA[s ‘c252+2{sr+1]
Y() kA[l S+2£ ] kA 1 S+2£
S)= i T 5 - o Z—T_
T g (RS e

1- For {<1 under damped system

YA



_ 1 S+2§ L 1 S+§+§
=kA|: - —[==kAl - N
o155 ()
I :
— ; - 2 5 2
() ()

==kA|- —

¢ — Fe —
Y(t):kAll — e_(;)tCOSlT(Z t — Le—(;)t sin 1T 52]

Y(t):KAll — e_@t (COSWt + le__(zsinwt)],

2
_ 2 1 g2= L) N
r=yp*+q \/1+ ( e =

11 _
1 §:tan 1 ——=tan

Y(t)=kAl1 - e_(r)t(rsinwt + 6)]

1v1-¢?
T

O=tan™
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Y(s)=kA

1.6
1.4
1.2
1.0
0.8
0.6
.4

Q.2

kKA

KA

¢ ¢
1 s+27 oAl S+t _
; - 5 2 =kA ; - 5 2|~
()] ()
:
2 ( 1-¢ )2 2 ( 1—(2>2
(s+2) +*= (s+2) +*=
¢ o 2]
s+g ¢ 1-¢2 °
2 1-¢2 ’ \2 1-¢ i
(s+2) +*= (s+2) +*=
¢
Y(t):KAll — e_(?)t (coswt + \/f__zzsinwt)]

W=

1-¢?
T

= 0.21 i j T I 1 L] A
0.4
0.6
0.8
'—-—- —
'_ —
— —
1 I 1 ! i | i | I
0 4 8 12 16 20



1.2 T T T I T T T | T
1.0 =
r=1.0
o8 1.5 —
2N 0 i
KM ™ 3.0
0.4 -
0.2 —
0 1 | i I 1 | 1 1 1
0 4 8 12 16 20

Terms Used to Describe an Underdamped System Second order system response for a
step change

| Period T |
= -
Re~p0nae time
) ==
: |
: B - T — = =
1
: 1
i 1
1 Y !
0 l Response
Rise time po

¢ time

Figure (8.3) Terms used to describe an underdamped second-order response.

1. Overshoot(OS) Overshoot is a measure of how much the response exceeds the ultimate value
(new steady-state value) following a step change and is expressed as the ratio 44BB in the Fig(8-3).

_ —T¢
OS=exp T

2. Decay ratio(DR) The decay ratio is defined as the ratio of the sizes of successive peaks and is

given by cca4 in Fig. (8.3). where C is the height of the second peak
¢)
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3. Rise time(tr) This is the time required for the response to first reach its ultimate value and is

[1-¢2
n—tan~1

labeled in Fig. (8.3).t,= — d

DR=exp =(0S5)?

4. Response time This is the time required for the response to come within £5 percent of its
ultimate value and remain there. The response time is indicated in Fig. (8.3).

5. Period of oscillation(T) The radian frequency (radians/time) is the coefficient of t in the sine
term; thus,

6. Natural period of oscillation
If the damping is eliminated (£=0), the system oscillates continuously without attenuation in

amplitude. Under these “natural” or undamped condition, the radian frequency is . This frequency is

1
referred to as the natural frequency Wn==

nWThe corresponding natural cyclical frequency fn and period Tn are related by the expression:-
1

fn:Tl =3 Thus, t has the significance of the undamped period.

T

7- Time to First Peak(tp) : Is the time required for the output to reach its first maximum value.

£y
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= Figure(8.4) Characteristics of a
step response of underdamped second-order system

Notes:for the step response

1-over damped

Very slowly rise time so long rise time but long settling time
2-under damped

Very long settling time but the rise time is short

3-un damped

Very long rise time but there is no settling time

4-critically damped

Short rise time short settling time.

Derivations

1-over shoot
wt+6=0+nn

t=% max or min n=1,2,3
iIf n=0,2,4,6 min

if n=1,3,5,7 max

first max when n=1

=" =1

w

Y(t):k2[1 _

1

J1-¢2

i n
e TWSln(W; + 0O)

¢y



it

e \/@(—sin 0)

1

Ymax=kA|1 —

Vi
For under damped cos 6=-(,sin6=,/1 — {2
Tan 6="—+— 1__;2

i o
Ymax=KA|1 +J1_e =% 1= (2"

1-(2

ir

Ymax=KA[1 + e V%

A max-B
Over shoot=— =
B B
I L
I 1_(2'
kA|1+e |—kA n
_72
Over shoot=—L ” ,over shoot=exp|1 4+ e V'™*

2-Decay Ratio
Decay ratio=%(the ratio of amount above the ultimate value of two successive peaks), t=r;1—”for n=3
3w
then t=—
w
it

First peak at n=1 Ymax=KA|1 + e V™

3{m

Second peak n=3 Ymax=KA|1 + e J1=¢

3{m
KA|1+e 1-¢ Iy —1¢ 2{m
. e 1_62_ B 1-32 _ —2{1
Decay ratio=—————=——=¢ ~eXP
KA[1+e V7 | ka o NUC

123



U3. Rise timeU (tRrR) It is the time required for the response to first tauch
the ultimate line.

gt
Y(t):kAll — e rsin(ow + e)]
At tr Y (t)=kA
qt
\/1{_(26_7sin(trw + 6)]

. in"1(0)-6 _g nm—tan
0=sin(t,w + 6), trz%, t, = ——= d

w w

’ _72
m—tan~1! 1_;
t, = " for n=1
4-period of oscillation
W-=radian frequency = === W 2nf, T—
_ i
B 27T
T= 2T
1-{2

5. Natural period of oscillation (TRnR). The system free of any damping for

£=0,w radian of frequency-V (2 wy, = % for (=0,w,, = 2nf, % = 271f,

1
fnz_

21T
6-Response time t,: The time required for the response to reach (x5%) of its

ultimate value and remain there.
7- Time to First Peak (tRpR ) Is the time required for the output to reach its

first maximum value.t:%

First peak is reached when n=1, tRpR="— = ==

T
1-¢?

3- Impulse Response
If impulse o(t) 1s applied to second order system then transfer response can
be written

Y(s)=———

T25242(0sT+1

¢o



X(s)=A=area

B k
Y(S)_TZSZ+ZCST+1 '
Y(s)= kA/T? kA/T? _ kA/T? _ kA/T?
j— { 1 _— 2 2= 2 2= 2 _72
T E e (O i) G ()
I-C>1
kA T 1-¢2
kA kA T2 T
— — 1_(2
Y(S): ( {)22 1_(2: = 2: 2
s+2) +—— 02 1-¢2 o2 631
T e (S) o)
ka8t _Je—1
= me T Sinhwt, W=
li-C<1
_ kA/T?
y(S)— c 2 1_(2
(s+3) + =
_ =z kA ¢t 1-{2

= e tSsinwt,w=

7\ 2 ( 1—(2>2 T\/1-02 T
_) H

€1




Example A step change from 15 to 31 psi in actual pressure results in the measured
response from a pressure indicating element shown in Fig. E5.14.

12.7
11.2
R (mm)

Time (s)
Figure E5.14

Assuming second-order dynamics, calculate all important parameters and write and
approximate transfer function in the form

R(s) K
P(s) t's'+2ims+1

where R'1s the mstrument output deviation (mm), P’ is the actual pressure deviation
(ps1).

Solution:

11.2mm -8 .
Gain = }?E:’!I m?f? =0.20 mm/ psi
31 psi—15 psi

2 —-11.2
Overshoo r:1..?';‘.'.'2.*.? 11. mm _ o 4

11.2 psi —8 psi

i
-

T Ak |

|
Overshoot = exp| ——— [=0.47
Wi-<7 )
5=0234
Y
Period = ri‘} =2.3sec
-2
‘\| =

1A



V1-0.234°
r=2.3secx—— =0.356sec
2T

R(s) 0.2
P'(s) 0.127s* +0.167s+1

Example: A control system having transfer function 1s expressed as:
_Y(s) 5
X(s) st +2um+l

G(s)

The radian frequency for the control system 1s 1.9 rad/min. The time constant is 0.5
min. The control system 1s subjected to a step change of the magnitude 2.

Calculate :

(1) Rise time

(1) Decay ratio

(111) Maximum value of Y(t)

(1v) Response time
Solution:

Given

X(s)=

| b

Time constant r=0.5 min

Radian frequency w=1.9 rad /min

f1- 22 1- &2 |
=" 19=3"_° - £=0312
T 0.5
1) Rise time
1-¢° 10312’
,«T—tan_ﬂ"T' 51415_“111-1“;:
tr = = = 0312 _1 0 min
W 1.9

ii)  Deacay ratio = . exp{ﬂ) =exp(ﬂ)
A J1-& V1-0.312°
- Decay ratio=0.127
ili)  Ultimate value of the response Y, . (B)att— =

Y(s) 5
X(s) 0.255+0.3165+1

¢A



10
$(0.255% +0.3165 +1)

. : . 10

lim __Y(7r)=lm__ [sY(s)]=lm__ =10
e V) ols¥ ()] ? (02552 +0.3165 +1)

Yttiae (B) =10

Maximum value of response = B(1+ E)

&

—.T:

)

Overshoot= B_ exp(
A \flll — &2

. ¥
Decay ratio=Overshoot™

0.127=Overshoot’
overshoot = 0.356 =E;
Maximum value of response =10(1+0.356)=13.56

. . T . ) .
1v)  Response time ts =3—=4.8077 min  for +5% of ultimate value

-

The Control System

The control system A liquid stream at a temperature Ti, enters an insulated, well-stirred tank at
a constant flow rate w (mass/time). It is desired to maintain (or control) the temperature in the
tank at Tr by means of the controller. If the indicated (measured) tank temperature Tm differs
from the desired temperature Tr, the controller senses the difference or error, E = Tr- Tm

€9



. Final controf Recorder-
Electrical power / element ‘controller
or steam 1 /

T

|_~Temperature
measuring
element

—suw, T

Figure (8.1) Control system for a stirred-tank heater.

There are two types of the control system:-
1) Negative feedback control system
Negative feedback ensures that the difference between Tr and Tmis used to adjust the control
element so that tendency is to reduce the error. E=Tr-Tm
2) Positve feedback control system

If the signal to the compartos were obtained by adding Tr and Tmwe would have a positive
feedback systems which is inherently unstable. To see that this is true, again assume that be system
Is at steady state and that T=Tr=T.i. If Tiwere to increase, T and Tmwould increas which would
cause the signal from the compartor to increase, with the result that the heat to the system would

increse. Ats.s. T=TR=TinE=Tr+Tm

Servo Problem versus Requlator Problem

Servo Problem

There is no change in load Ti, and that we are interested in changing the bath temperature (change
in the desired value (set point) with no disturbance load).

Requlating problem

The desired value Tris to remain fixed and the purpose of the control system is to maintain the
controlled variable Tr in spite of change in load if there is a change in the input variable
(disturbance load). Control system elements Control system elements are:-

1) Process

2) Measuring element

3) Controller

4) Final Control Element



TorY

load
% | I—
Final control
— process
controller clement P
Set point
Gce Gv Gp
TmorYm Measuring
device A

Closed Loop Feedback control

Measuring Element

The T.F. of the temperature-measuring element is a first order system

Measuring Element

The T.F. of the temperature-measuring element is a first order system

:> ZTHI (9) = GHI Z_—(g)

m

Bl 7,5 +1

Where T and fw are deviation variables defined as

T=T-T,
Tm = Tm 7Tm;
. A Output
K, =steady state gain :_7{‘1
Ainput

T,=time lag (time constant)=(1-9) sec

T(s) _Jg - _Ka
"o s+l

> I_;H(S)

Figure Block diagram of measuring element

o)



Controller and final control element
The relationship for proportional controller 1s

P(s) e

Gs) - (5) E(s)—| K. —> 00
O(s) = KcE(s)

P=P-P

E=I-T,

G(s) for propertional controller  G_(s) = K
T, =T =T at steady state
Controller

To(or Tr)p E P(s)
> G, pb——>

T

Controllers and Final Control Element
Final control Elements: Control valve, Heater, Variec, Motor, pump, damper, louver, .... etc.

Control valve Control valve that can control the rate of flow of a fluid in proportion to the
amplitude of a pressure (electrical) signal from the controller. From experiments conducted on
pneumatic valves, the relationship between flow and valve-top pressure for a linear valve can often
be represented by a first-order transfer function: Air supply

v

F

Control valve (Air to close)

Air supply

oY




Control valve (Air to open)

(air :to close) (air to open) a
open close close open
P=(3-15)psig P:(f—li)psig
Vol \
max flow flow max
flow rate rate flow
rate =0 =0 rate

Transfer Function of Control Valve
m(s) O(s) K,
p(s) P(s) Tt,5+1

A Output [Q2 - QIJ
S.S

Gv(s) =

K,=steady state gain =
A Input P,-P

T, = Time lag

T, <10sec (EY . ™ 0@ = - B H
Whara-

Kv: steady-state gain i.e., the constant of proportionality between steady-state flow rate and valve-
top pressure. tv: time constant of the valve and is very small compared with the time constants of
other components of the control system. A typical pneumatic valve has a time constant of the order
of 1 sec. Many industrial processes behave as first-order systems or as a series of first-order

systems having time constants that may range from a minute to an hour. So the lag of the valve is
e

negligible and the T. F. of the valve sometimes is approximated by:k,, = )

The time constant of lag valve depends on the size of valve, air supply characteristics, whether a
valve positioner is used, etc. Control Action It is the manner, in which the automatic controller
compares the actual value of the process output with the actual desired value, determines the
deviations and produce a control signal which will reduce the deviation to zero or to small value.
Classification of industrial automatic controller: They are classified according to their control
action as:

1) On-off controller

2) Proportional controller (P)

3) Integral controller (1)

4) Proportional plus Integral controller (PI)

5) Proportional plus Derivative controller (PD)

6) Proportional plus Integral plus Derivative controller (PID)

The automatic controller may be classified according to the kind of power employed in the

operation, such as pneumatic controller, hydraulic controller or electronic controller.

oy



Self-operated controller: In this controller the measuring element (sensor) and the actuator in one
unit. It is widely used for the water and gas pressure control.

Tz

Comparator

Set point
Orys

Gk=Ke

Controller

Tu(s)

d=T,(s)
e
Kv Illl:.
B P s+ 1 Q.:. Gp =
Final control - Process
element
Km T(s)
e

T —
o oras+1

Figure: Closed loop block diagram of first order system

y(s)

| T(s)

Types of Feedback Controllers 1) Proportional controller (P): For a controller with a
proportional control action, the relationship between the output of the controller, p(t), and the
actuating error signal (input to controller) is

pae(t)
P()=kce(®) + ps, p(t) — ps = kce(t), p(s) = kce(s)

G, =

_p(s)
k € e(s)

set point

E(s)
Ke

P(s)

Proportional Band (Band Width) Is defined as the error (expressed as a percentage of the range
of measured variable) required to make the valve from fully close to fully open.P.B:ki 100

On-Off Control On-Off control is a special case of proportional control. If the gain Kc is made
very high, the valve will move from one extreme position to the other if the set point is slightly
changed. So the valve is either fully open or fully closed (The valve acts like a switch). The P.B. of
the on-off controller reaches a zero because the gain is very high P.B=0

2) Propertional-Integral controller (P1): This mode of control is described by the relationship

o¢



P(t):kce(t)+§ [y e®)dt + p;
P()-s = kee(+ [ €O

p= ke(t)+ fte(t)dt

k e(s)

P(s)= kce(s)+

p(s) ke _ R
Ge =23, G = ke +22,Ge = k(1 + )

E(s) 1
KE{].‘l':) 4{5}

%}_—P—I—Wk@-ﬂ@i—ﬁfﬁ—ﬂﬂi—dﬂﬂé@ m ertor E(s)=—

P(s) =K, (1+-) 2

1,5 s E(t)

S

p(®)

KcA T

K. A
LP() =K. A+——1 A

Ty 0

Ps

. . 0
Y=c+tmX

t E(f) P(1)

3) Proportional-derivative control (PD):

P(y=kce(t) + keTp 2 +
(t) DPs = k E(t) + kc Tp dz(t)
de(t)

p(t) pS k E(t) + kc Tp dt

00

t 0 t
Response of a PI controller (lineaer)



p(s)=k.e(s) + k.tpse(s), G, = % =k, + k.tps = k.(1+ 1ps)

set point E(s) P(s)
Ec(1+TpS) |y

Kc: gain o : Derivative time (rate time)

Example:

For Ramp Error  E(f) = At (Ramp) E(s) = iﬁ
§2
AI‘EC N KcAT,

AN A)

P(s) = Kc(1+7ps)xE(s) =K (1+7p5) % éﬁ =
5°
P(t) =K At+ K At

4) Proportional-Integral-Derivative (PID) controller

P(t)=k,e(t) + = fot e(t)dt + k,tp EL 4 .
T1 dt
k cte(t)dt de(t
P()-ps = kcE(t)'l'T_I fO © +chD%

k cte(t)dt de(t
P:kce(t)+T—If Odt . de®

P(S)= kee(s)+e =2 +heeTpse(s),

S

G, = 2O

==

k 1
k. + ;CS + k.tps=k.(1+ - + 7p5)

o1



wntroller

set point

Motivation for Addition of Integral and Derivative Control Modes The value of the controlled
variable is seen to rise at time zero owing to the disturbance. With no control, this variable
continues to rise to a new steady-state value.

With control, after some time the control system begins to take action to try to maintain the
controlled variable close to the value that existed before the disturbance occurred.
With proportional action only, the control system is able to arrest the rise of the controlled

variable and ultimately bring it to rest at a new steady-state value. The difference between this new
steady-state value and the original value (the set point, in this case) is called offset.

The addition of integral action eliminates the offset; the controlled variable ultimately returns to

the original value. This advantage of integral action is balanced by the disadvantage of a more
oscillatory behavior.

The addition of derivative action to the Pl action gives a definite improvement in the response.

The rise of the controlled variable is arrested more quickly, and it is returned rapidly to the original
value with little or no oscillation.

Control action
1 None

2 Proportional
3 Proportional-integral
4 Proportional-integral-derivative

I
Offset

! g —1 %6

Time (min) —

Controlled variable, deviation
from 1nitial value

Figure: Response of a typical control system showing the effects of various modes of control

Example: A unit-step change in error is introduced into a PID controller. If Kc= 10, 1= 1, and tp=
0.5, plot the response of the controller, m(t).

Solution: The equation of PID controller is
ov



_p(s) 1
G. = m =k, (1 + i + TDS> m(t)

E(s)=1,P(s)=—(1+= + 0.55) ==+ 5 + 5

m(t)=10+10t+58(t)

slop=1

10

Example: Consider the 1storder T. F. of the process with control valve

Valve process
ZONRIR.Y Ky |Y)
s +1 s +1 -

If we assume no interaction; The T. F. from P(s) to Y(s) is
Y(s) _ KyK,
P(s) (rys+D(rs+1)
Y(s)= < %y

s(rs+D(rs+1)

For a unit step mput in P

y(t) = KK, | 1-

—e VT ——e

. _ .
r,T ‘ | R 1 ]I

]
r,—r\7T T )

v

v(s) KK,

If =7, thenthe T.F.1s —=
P(s) (rs+1)

For a unit step mput in p
y(H) = KK, (1-¢")

oA



Example: a pneumatic PI controller has an output pressure of 10 psi when the set point and pen
point are togather. The set point is suddenly displaced by 1.0 in (i.e a step change in error is
introduced) and the follwing data are obtained.

Time (s) 00 20 60 80

Psi 1087 5 35

Determine the actual gain (psi/inch displacement) and the integral time

P=k.e(t)+— [, e(t)dt + p,
I

ppe = ke (L [ €O
()= kee()+L J7 €O
ke(s)

p(s)=k.e(s )+
p(s) kc _ =

G. = (5’ G, =k.+—, G, =k.(1 +r,s)

k. =2

kc_ 7—5 B 2

T, 60—20 40

T; = 20x2=40 sec

1.0m

10 psi

K

[«

8psi

For PI control
-

o4



Example: (A) a unit-step change in error is introduced into a pid controller, if Kc=10, 11=1 and
t0=0.5 plot the response of the controller P(t). (B) if the error changed with a ratio of 0.5 in/min
plot the response of p(t).

a-p=k.e(t) + — f e(t)dt + k.tp dz(t) + s
_ te(t)dt de(t)
P-ps = ke (t)+ f thetp—;

p(t)= k E(t)+—ft€(t)dt oty L8

CDdt

p(s)=k e(s)+£ﬂ+k TpSE(S),

p(s)
GC e(s)

P(t)=10+10t

= k. + +k cTpS=k (1+—+TDS)

K{
1 10 Ty
E P
0 0 >
0 0
b-E=0.5t%E = 0.5, [ dE dt = [ V>4
dt

p(t)=10x0.5t+10 [ 0.5td¢+10x0.5x0.5=2.5+5t+2.5 ¢



P(t)
2.5
10
22.5
40
62.5
90

T\ Py T e L | st b

E 0.5 P(1)

(=]
h

hd= | = | O~

Dynamic Behaviour of Feedback Controlled Process

Overall transfer function of a closed- loop control SXS.'.??.’H

Comparator (S
7 ' . C(s ; mi(’s
Ysp Ge ( l Gy l( )
Controller Final control E; Process
clement
Tm\ S - 7S
_ Vml(s) Gy, < y (s)
Process balance
_‘r"( S) — Gp m( 5-) + Gd d( S) Measuring Device

Measuring device
Vi (*5) = Gm ‘1;’(6')

Controller system

1)



Controller system

E(s)=y,(s)—,(s) Comparator
C(s)=G.E(s) Confroller

Final control element

m(s) =G ,C(s)

Algebra manipulation of the above equations and arrange then
y(s)=G,m(s)+G,d(s)
y(s)=G,G,C(s)+G,d(s)

y(s)=G,G,G E(s)+G,d(s)

$(5) = G, GG, (1, (5) = 1 (5)) + G d(s)

W) =G, GG (yy(s) = G, y(s)) + G, d(s)
¥($)=G,G:G v, (s)-G, GGG, y(s)+Gyd(s)

¢V sp

(1+G,.G,G,G,)¥(s)=G, GGy, (s)+G,d(s)

Let G=G¢ Gf Gp

Let G=0G¢ Gf Gp

V) = V() + L —d(s)

GG,, 1+GG,,

G G
— = Gwp—4 =G
1+GG,  Y1+GG, ™

Types of control proplems:

1) Servo systems: The distubance does not change (i.e. 0=(s)d) while the set point undergoes
change. The feedback controller act in such away as to keep y close to the changing spy. The T.F.
of closed loop system of this type is

P(s)=——Jd___
1+(rf£rf(_rp(_rm

V() = Groaqd (5)

d(s)

3) Regulated systems: In these systems the set point (desired value) is constant (0=(s)ysp) and the
change occurring in the load. The T.F. of closed loop control system of this type is:

a1y



) =— %
1+ (—T.r(—TprGm

F(8) = Gioggd (5)

d(s)

The feedback controller tries to eliminate the impact of the load change d to keep y at the desired
setpoint.

Effect of controllers on the response of a controlled process: (1) Effect of
Propertional Control The general T.F of the closed loop controller is:

d(s)

G.G G
Ps) =T g (s)
1+G,G,G,G, 1+G,G,G,G,

Consider G, =1 , G,=1
Also for propertional controller G, =K,

And eqn. (*) becomes

-

. _ kG, G o
vy R SRS Ty oyl

cp
For a first order systems
dy
r,——+v=Km+K,d
P di

Which gives

V(s) = - m m(s)+ (f (s)

Thus for the uncontrolled system we have time constant= 1,

Static gains: K, for manipolation and K, for load

K -
put G, = . and G, = K4
7,5+ 1 7,5+ 1
Then by substitution in eqn. (**) and take the closed loop reponse as
K, K,
| _ r s+1 T,5+1 -
_1-‘(5')=—K1SP(5 J+—K(H6‘J
I+K, I+ K,
T,5+1 T,5+1
— KpK _ K, 1+K K
mﬁ[,fggran KK d(s)] S
KPKC Kﬂ'
I+K, K. 1+ K, K. -
7(s) = T+ )
| 7,8 , +.1+LPI<.FC SP rfS, _1+%p%c
1+K, K. 1+K,K. 1+K, K. 1+K,K.

Ty



Rearrange the last eqn.

Where
T = # Closed loop time constant
71+ K, K,
_ K K.
T =2 ¢ (losed loop ststic gain
o1+ K K.
— K i .
K,=——9%  Closed loop ststic gain
1+ K K.

The close-loop response has the following characteristics:-

1- It remains first order with respect to load and set point change

2- The time constant has been reduced (ppt1<) Which mean that the closed-loop response has
become faster than the open loop response, to change in set point or load.

3- The static gain have been decreased.

Disadvantage of Proportional control Consider a servo problem with a unit step in the set point

KP

7,8 +1 s

|~

7=
¥(t)=K,(1-e"'™)

~Y(=)=K 5

The ultimate response of 7 » never reaches the desired new setpoint. There is
always a discrepancy called effser which is equal to:

Offset = New set point - Ultimate value
— K K
=1-K,=1- Pf‘i
1+K K¢

¢



Offset decreases as K becomes larger an thoretically offser -0 when

1

Yull)  of fset = —— l
1
y(t)
0
2- Effect of Integral Control
Consider a servo problem, d(s)=0
G.G,G
— c—f-p —
V(s)= Vep(s
O e N
Consider G, =G, =1
st ~ k}’
For the 17 order processG, =
r,s+1
For a simple mtegral control
1
1
G.=K_—
I-IAS‘
Sub in eqn. (*)
KP KC
T,s+1 1.5 K. K
V(s)= £ g = ?SP(S}: g E— ‘fSP(S’J
1+ Kp  Kc (T,5+1)(1;5)+ KpKe-
T,5+1 7,8
KP rC’
_ KK _
V(s)= V()
T,T;5 N T8 PKC
KPKC KPKC KPKC
_ | _
V(s)= 5 Vsp(s)

rls? + 2prs +1
Wher:

III Z'Irp l |I Tf
T= .17 V=S =
| KK, 2\7,K,K,

Eqgn. (**) indicates an important effect of the integral control action:-

10
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1- It increases the order of the dynamic for the closed-loop reponse.
Thus for a first-order uncontrolled process, the response of the closed-loop becomes second order.
2- Increase cK decreases y-.more oscillatory

4- To examine the effect of integral on s.s error

_ 1 _
‘1-(5) — 5 9 ,IIS_P(S)
T8 + 2wrs +1
N 1
Ii _1‘5}3(\.5‘) - —
P
The ultimate value= AK=1%*1=1
. offset= New setpoimt-ultimate value
=1-1=0
It indicate that the integral control eliminates any otfset

3- Effect of Derivative Control Action
For derivative control

G.=K_1ps

K

P -K_Tps

_ 7,5+ 1 _ _ KK _tps _
V(s)= z Vsp(s)= Tr KK 7 (s)

7,5+ 1

K. K t,5
V(s)= P Vsp(s)

(r,+K, K tp)s+1

1- The derivative control does not change the order of the reponse.
2- The effective time constant of the closed-loop response )KK(pcppottt>+This means that the
response of the controlled process is slower than that of the original first-order process and as
cKincrease the response become slower.
Effect of Composite Control Action 1- Effect of Pl control Combination of propertional and
integral control modes lead to the follwing effects on the response of closed-loop system.
1- The order of the response inceases ( effect of | mode).
2- The offset is eliminated (effect of | mode).
3- As Kcincreses, the response becomes fater ( effect of P and | modes) and more oscillatory to set
point changes [ovesrshoot and decay ratio increase (effet of | mode)].
Large value of Kccreate a very sensitive response and may lead to instability.
4- Asitdecreases, for constant Kc, the reponse become faster but more oscillatory with higher
overshoot and decay ratio (effect of | mode).
2- Effect of PID control To increase the speed of the closed loop response, increase the value of
the controller gain Kc. But increasing enough Kcin order to have acceptable speed, the response
become more oscillatory and may lead to unstability. The introduction of the derivative mode
brings a stability effect to the system. Thus to achive
1- Acceptable response speed by selecting an appropriate value for the gain Ke.

2- While maintaining moderate overshoot and decay ratios.

3-

1



mmm
Example: Regular loop with the following elements
3
Gp(s) = rocess
Ps)= 2 (process)
1
G4l(s) = Load
)= o5 (Load)
Gu(s)=1 (measuring device) if not given take 1
Ge(s)=2 (controller)
Gr(s)=1.5 (valve)
Gyls)
Determine the system response for a unit step in load 8(5) 1
( 105 +1
esp(s). 2 Jo1s Jg o3 4 Ny
Set point \. i i 10s +1
Gels) Gq(s) T Gas)
1 “
Solution:
Gi(s)
mbn ™ 1 . 1 9.1(‘5') G{? (5)

v



6,5) _ Gy(s)
6,(s) 1+G, (s)G(s)

3 9
G(s) = Ge(s) Ge(s) Gp(s) =2x1.5 =
(s) c(s) Gy(s) Gp(s) : 10s+1 10s+1

Regulator loop:

1
O(s) _ _gos+1 _ 1
6,(s) I+ 9 10s+10 A
105 + 1
Ga(s) = 1 V10 | .
s +
1
A= 10
0,(s)= 6,1 ff-set
(=) s(s+1) o
0.()=0.1(1-¢")
Att=0.6,()=0 >
Att=m, 6,(x)=0.1
Or
1
1
: . 10 |
8, (x)=limsg, (s)=Llm 10 _ ~
s—0 5—0 _5‘(:_:; —1) 10

Offset= New s.s value-Ultimate value=0-0.1=-0.1

Example: the set point of the control system shown in the figure is gives a step
change of a 0.1 unit. Determine

1- The maximum value of C.

2- The offset.

3- The period of oscillation.

R K. =16
C(s) _ GG, L

5 C
(s+D(2s+1)

A 4

4

R(s) 1+GG,
16x— 2>
C(s) (s+D@2s+1) 8
R(S) 1.1 6x 5 257 +3s+1+8
(s+1)(2s +1)
8
Cls) 8 3 0 3 0.8889
22 . T2, - 2 .
R(s) 25°+3s+9 2 +%s L7 022257 +0333s+1
7 =0222=1=0471
2ur=033332Dw = 0.353? (Underdamped

TA



Ultimate Value=A*K=0.1*%0.8889=0.08889

- —3.14 353

Overshoot = exp(— wr —) = exp( f 1418x0.3 8) =0.3047

y1l-w~ \1-(0.3538)°

1) The maximum value =Ultimate value*(1+Overshoot)
=0.08889%(1.3047)=0.1160

To find the time required to reach maximum value apply K. A . Cpax vand t

in the equation.

w

Y(t)=kA[1-e™" 7 (coswt +—
VI-w°

sinwt |

|'IIII - 2
w=Y"¥
r
2) The offset=New set point- Ultimate value
=0.1-0.088889=0.01111

2 - /
3) Period of oscillation = fm- o 2mx047L 3.1640

J1-y?  \1-(0.3538)?

Example: Consider the figure below, a unit step change in load enters at either location 1 or
location 2.
What is the offset when the load enters at location 1 and when it enters at location 2

G G1 G1
R+ - _q 2 | 1 >
"C%' K= & (2s+1) é 2s+1) c

a-when the load enters in location 1

Uj(s)zi , Us(s)=0

5
GG
Cls)=—L12 U (s
(s) 1+ G.GG, 1(s)
4 2 1
. 2s+1 2s+1 gy 2 ;
Cls)= S+ U.ffs)= Us)
L2 1 452 +4s+1+10 7
2s+1 2s+1
2 Uy 21
= Yis)=7 "(s)
4s* +4s+11 is-‘)+is—]
11 11
) .
K=—=0.1818
11
[4
r=.]—=0.6030
11

!



wr=2=y =21 03015
11 11 27
Ultimate value=A . K=1*0.1818=0.1818

Offset=0 - 0.1818=-0.1818

b-when the load enters in location 2

G .
Cls)=——2—U,(s
() 1+ G.G,G, 2(5)
1
25 +1 ; 25 +1 ;
C(s)= U(s)=——U,(s
©) a2 S PTE TP TRC
25 +1 2s+1
25 +1 25 +1
S R § ) P —
1.2 PR 2 / N /
45 +4s5+11 Aot
11l
Cer)=tim——2l L 500
s—0 4 2 4 1
—s +—s +11

Offset= 0 - 0.0.091=-0.091

Example: For the tigure U
1 C
MO_. K. (1+ LN rDs)—bé—b
r rs+1

I )
Forrp=1,=1 andr; =2 '
a- Calculate v when K.=0.5 and K.=2
b- Determine the effect for a unit-step change in load if K.=2
C(s) _ GCG}?
R(s) 1+G.G,

v

. 1 1 1
K (I+—+1p5) K(l+—+s
C(s) ;8 b s+l o 5 )25 +1

RS yg +tvrp)— 14K 1+t s5)
T8 s +1 s 25 +1
_os+1+s? 1
_ A s )2s+1 _ K (s+1+5%) 3 K (s +1+5%)
B s 2 I PR~ 2y T NI N ~
]'+Kr(6 1+s) 1 2s"+s+ K (s+14+57) (2+K.)s"+(1+K,)s+K,
s 25 +1
(s+1+52)



2+K) o, (+K)
a-1) K.=0.5
_ 24K, _ 2+05
"\ k. Voos
(1+K) 1405 3 3

zt’[frzi — :3:>ljf/:—:h7=0.6708
K 0.5 2t 2x2.2361

a-2) K=2
[2+2

ERE S WIS
\ 2
pr=UFE) 1025, 1 105503

K 2 27 2x141421

c

T =2.23061

T =

G
B)C(s) = o Gj" o= Ul(s)

P cC

1 1

s +1 DY(AS‘) — 2s+1 : DTS)

|
1+ K. (I+—+71ps 1+K,(1+—+s
ol r,s D)ﬁs+l o 5 )25+'1

C(s)=

5 _ 5 1
=— - : 5-U (s)= 5 . 5o X —
25" +s+ K (s+1+57) 2" +5+2(s+1+57) s

1

=
4s” + 35 +1
r=2

2yt =3=2w=—=0.75

= | w2

C(o)=lm s 0

s—0 452 +3s5+1
Offset=0-0=0

Example A PD controller is used in a control system having a first order process as shown. For
Servo problem a-find expression for y and 1 for the closed loop response. b-if t11=1, Tm=10 sec .
Find Kcso that y=0.7 for two cases (1) t0=0,(2) to=3 sec.

c- Calculate the offset in both cases.

\A



o WOV LRI LRI WL L% L LR LWV LEL Wil

Lt@—b K (1+ rDs)-—bé—b

(rys+1)

T_ 1

y

(rm 5+ 1)

For the closed loop T.F.

G.G G
=2 R(s)=—— 2 U(s)
1+G.G,G, 1+G.G,G,

K. (I1+7ps)-

75 +1

I 1
s+l 7,5 +1
K. (1+7ps)

C =

R(s)
I+K (1+7ps)-

C =

I R(s)

TS +1
K.(1+1ps)
1’13'1,”52 +(ry+7,)s +1+ K + K 1ps
r s+1

rs+1+ K (1+755)-

C =

R(s)

K. (1+7ps)(r,s+1)
71?';::5'2 +(ry+7, +K.1p)s+(1+K,)
K.(l+tps)(t,s+1)
(1+K_)
rfrmsg N (t,+1, + K.TH) ¢
(1+ K,.) (1+K_)

C =

R(s)

=

Ris)
+ 1

\Al



c
21’&,3. _ I-]. + Tm K:?TD
1+ K,

_n+r,+K 15 I.'I—KC
Z(I_Kc) .\'I T1lm
r.+7, +K T

W= l,-_ " - c"D
2-\“,'| (l + 'K'C ) I'] I'm

b)y =1 r“”; Kfrﬂ for y=0.7
2,1+ K )17,

1) tp=0
60 +10+0 35

21+ K,)\60x10 /600 + 600K,
/600 + 600K, =50
600 + 600K, = 2500
K, =3.166

\al



2) tp=3 sec

_ 60+10+3K. 70+ 3K,

2.\,-"('1 + KC)\,-"'600 2 \,:"(1 +K,) V600

70+3K, = 34.292\,3('1 +K,)
2.04(1+0.042K,) = \.u"(l +K,)
4.1616 +0.355K, + 0.007:’3;‘&’{2 =(1+K,)
0.00751{3 —0.0645K_+3.1616=0
K, =80.73 or K, =5.266

(¢) The offset
lim f(t)=1Iimsf(s)
5—0

f—soc
1

R=-
R
K (1+1ps)(r,s+1)/
JU+k) 1 K. 3166

= = =0.76
s 1+K. 4166

Ultimate value=lims 5
20 7T, S N (ry+7, +K.tp) ;

(1+K,) (1+K.)
Offset= 1-0.76=0.24

= o ae———— -

+1

Overall transfer function of a closed- loop control system
The transfer function of a block diagram is defined as the output divided by its input when
represented in the Laplace domain with ze ro initial conditions. The transfer function G(s) of the
block diagram shown in fig

Y(s

=50

Here the path of the signals X(s) and Y(5s) is a forward path.‘

X(sp—— G(s) —>Y(s)

Fig. (1) Transfer function of a block diagram

Consider the block diagram of cascaded elements shown in Fig. (2a). Form the
definition of a transfer function we have:

X,(s) _ _
X =Gy(s)

X5(s) _
X, (s) =G, (s)
Y(s)

Xs(s)

=G;(s)

\&4



And substitution yields
Y(8) = G3(s)X5(s) = G3(5)[G,(8)X,(5)] = G3(5)G,(8)G, ()X, (5)
Which can be written as

Y(s)
=G;5(5)G,(5)G,(s) =G(s)
X, (s) 3 2 1
Xus) [ ] X0 ] X6) -1 YO Xy(s) Y(s)
— G1(5") E— (‘2(5) E— 63(5) — R G(S) L
(a) (b)

Fig. (2) Cascaded elements

The overall transfer function then is simply the product of individual transfer functions.
For applications where it is required to generate a signal which is the sum of two signals we define

a summer or summing junction as shown in Fig. (3a). If the difference is required, then we define a
subtractor as shown in Fig. (3b). Subtractors are often called error detecting devices since the
output signal is the difference between two signals of which one is usually a reference signal.

+ +

Xi(s) XioXa(s)  Xa(s) Xi(5)-Xa(s)
+ -
X, (s) Xs(s)
(a) (b)
Summer

Subtractor (Error detecting device)

Fig. (3) Addition or subtraction of signals

The combination of block diagrams in parallel is shown in Fig. (4a). Form the
definition of the transfer function we have

Y,(s) =G, (5)X(s)

Y,(s)=G,(s)X(s)

Y;(s) =G;(s)X(s)

And the summer adds these signals,
Y(5)=Y;(s)+Y,(s)+Y;5(s)

or

Y(s) =[Gy(s) + G, (s) + G5 (s)[X(s)

The overall transfer function shown in Fig.(4b) 1s
96

X(s)

where

G(s) =G,(s) +G,(s) +G;(s)




Gi(s)

h 4

X(s)

Ga(s)

Y

Gs(s)

(@)

G(s)

—>V(s)

(b)

Fig. (4) Parallel combination of elements

In summary, we observe that for cascaded elements the overall transfer function is equal to the
product of the transfer function of each element, whereas the overall transfer function for parallel
elements is equal to the sum of the individual transfer function.

Example: Derive the overall transfer function for the control system shown in Fig.

)

[B:5)

Hi(s)

R(s)—toﬂb Gi(s) CI(E’)+ 280 6

T Bs(s) Ha(s)

Cz(-‘i).

Gs(s)

C(s)
>

Fig.(5) Block diagram of a system with two feedback paths

Solution

E,(s) =R(s) =B, (s)
E,(s) =C,(s) = By(s)
C,(s) =G;(5)E;(s)
C,(s) = G,(s)Es(s)
C(s) = G3(s)C,y(s)
B,(s) = H,(s)C(s)
B,(s) = H,(s)Cy(s)

Substituting of the sub-transfer functions

A



C(s) = G3(s)Cy(s)

C(s) = G;3(8)G1()Ey(5)

C(s) = G3(s)G,(9)[Cy(s) =By (s)]

C(s) = G;(5)G,(5)[G,(s)E,(s) —H,(s)C(s)]

C(s) = G3(3)G,(3)[Gy(s)(R(s) = B, (s)) —H;(5)C(s)]

C(5) = G3(5)G, ($)[Gy ($)R () — Gy (5)H, (5)C (5) — H, (5)C(5)]

C(5) = G ()G ()[Gy (IR (S) — Gy (9 Ha (5) — 2 — H, (5)C(5)]

Gs(s)

C(3) =G3(5)G,(5)Gy(s)R () — G5(5)G, ()G, (s)H, (s)

Finally, the overall transfer function
C(s) _ G(5)G,(s)G;5(s)
R(s) 1+G(5)G,(s)H,(s)+G,(s)G;5(s)H,(s)

C
G;(s)
[1+G,(3)G;(5)H,(5) + G3(5)G, (s)H, (s)]C(s) = G5(3)G, (3)G, ()R (s)

~G3(5)G, () H, (5)C(5)

Example: A single-loop control system is shown in figure below. Determine closed-

loop transfer function Y(s)
R(s)
R(s) *
1 O DG +2)
Solution
Transfer function O L
R(s) 1+GH
2(s+1)(s+3) 2(s+1)(s+3)
Y(s) _  s(s+2)(s+4)  _ s(s+3)(s+4)
R(s) - 2(s+1)(s+3) ] s(s+2)5+H) +2(s+D(s+3)
s(s+2)(s+4) s(s+2)(s+4)
2(s+1)(s+3) ~ 25 +6s+25+6

S5+ +) +2(s+1)(s+3) s +45+2s7 +8s+ 257 +65+25+6

CY(s) 287 +85+6
CR(s)  s7 487 +165+6

\ 4

Y(s)

Block Diagram Reduction
When the block diagram representation gets complicated, it is advisable to reduce the diagram to a

simpler and more manageable form prior to obtaining the overall transfer function. We shall
consider only a few rules for block diagram reduction. We have already two rules, viz. Cascading
and parallel connection. Consider the problem of moving the starting point of a signal shown in Fig.
(6a) from behind to the front of G(s). since B(s)=R(s) and R(s)=C(s)/G(s), then B(s)=C(s)/G(s).
therefore if the takeoff point is in front of G(s), then the signal must go through a transfer function
1/G(s) to yield B(s) as shown in Fig. (7b).

A%



R(s) =¥ G(5) —>C(s) R(s) —» G(5) »C(s)

B(s) Starting point of B(s) B(s) +— 1/G(s) [¢—

(a) (b)

Fig.6 Moving the starting point of a signal

Consider the problem of moving the summing point of Fig. (7a). Since

E(s) =[M(s)+ C(s)]G(s) = M(s)G(s) + C(s)G(s)

E(s) =M, (s) +C,(s)

where

M, (s) = M(s)G(s) C,(5)=C(s)G(s)

The generation of the signals 3/,(s) and C;(s) and adding them to vield E(s) is shown
in Fig. (7b). A table of the most common reduction rules is given in Table 1.

M(s) * - - M (s

) G(s) &; &; G(s) ! ) E(s)

+

C
) Cisl— G(s) |l
(a) (b)
Fig.(7) Moving a summing junction
Table 1 Some rules for block diagram reduction
Rule Original system Reduced system
Cascaded BION G\(s) > Gs) ey RO )| G1(s)Gafs) SO
elements
. RSy Gy(s)
Addition or R(s) b Gy(s)+Ga(s) C(s)
subtraction
> Gos)
R(s) G(s) C(s) >
‘ RSy G(s) L)y

Moving a A 4
ot : 1
starting point

e Bs), G(s)

YA



R(s) T G©) Cis)y R GGs)

summing point

Moving a

B(s) BO) I Ges)

R(s) T C(s)

Closed loop / G(s) R(s) .| G(s) C(s)
system 1+ H(s)G(s)

H(s)

Consider the transfer function of the system shown in Fig. (8a). The final transfer
function 1s shown in Fig. (8d).

-ie’ First reduction

EN ;
A(S) ¥ :—-{Gm —

F Gi(s)

H,(s) |

(a) Next reduction
""""""""""""""""""" Tets
[ Gils) Ga(s)+Gs(s) o G.(5) - ©

H,(s)], E

G,(s) -

Ha(s)
)
Rs) ' [G, () + G, ()]G, (5)

P Gils) A = 6. 5) - 6. (5]

Ha(s) |
T T T
R(s) G($)Gs(s) C(s
= M1=G6GOHG)
(d

Fig.8 Obtaining transfer function by block diagram reduction

vAa



Example: Obtam the transfer function C/R of the block diagram shown in Figure

below.

G,(1+G)

o

1+G,G,- H)

Example: Obtain the transfer function C/R of the block diagram shown in Figure

below.
Gi(s)
Ris) . + l *
50 O Gi(s) Gags) Gs(s) O
. T .
His)
L Ha(s)
Solution:
Ria

Cis)



+ O + O Gi(s) Ga(s) Ga(s) + G4(s) Cls)
T .
Hi(s)
Y Hajs) :
Ris)
G1(s) x G2s)
O 1-H1(s(G1(5) x G25)) Gas) + G4s) Cis)

Ha(s)

G,(3).G,(S)G5(s) + G,(s))
C(s) 1-H,(s).G,(s).G,(s)

R(s) L H,(s) G(5).G,(5)(G5(s) + G4 (s))
’ 1-H,(3).G,(5).G,(s)

G1(5).G1(5)(G3(5) + G4(5))
- 1-H,(5).G,(5).G,(5)
~ 1-H;(5).G,(5).G,(s) +H{S\]GI(S)GE{S)(G;{SHG4(S)}
1—H,(5)- G,(s)- G, (5) " 1-H,(5).G,(5).G, ()
C(s) _ (G4(5)- G, (3))x(G(5) + G, (5))
R(s) (I-H;(5)-G,(5)-G,(5))+(H,(5) - G;(5)- G, (3))x(G5(5) + G4 (3))

AN



Homework

Q1

Gc

Drive transfer function from the diagram below

a-for change in load u

b- for change in set point

Q Drive transfer function from the diagram below

a-for change in load ul
b- for change in load u2

c- for change in set point

Gc

U — 3] K
Gv Gp
Gm
ui K1 vz K2
—_—>
—>
Gp Gp2

Gv

AY.
(AR

Gm




Q 3 Drive transfer function from the diagram below

a-for change in load u

b- for change in set point

Gpl

Gc

Gv

Gp2

Gm

AY




Q4 state transfer function

Gv

GF

Gmf

GT

Gi

Gmt

A¢



Q5 Sketch the block diagram and drive the feedback loop over all transfer function both with
respect to set point change and process load change for each the following feed back control
schemes

A-proptional-integral-derivative controller azero-order valve two first order process system
in series with different gains and identical time constant and first order measuring element with
transport lag giving a negative feed back signal

B-proptional —derivative controller whose outputs acts as asset point on an inner loop atrue
second order process and zero-order measuring element giving a negative feed back signal

The inner loop containing proptional and first order valve and system contain three first order
system with first order measuring elements giving negative sgin.

Q6 determine the transfer function

A
X B ¢ D Y
Ga M\ Gb Ge
” \\
X+ + Y
1 0.5
Ts+1 T1s
+ — Tl




Repeat Q2 B-sketch the control loop block diagram for controlling t2 with control load MR the
controller is proportional and the measuring element is first order with transport lag.

Repeat Q5 determine the parameter condition for the overall reaction system and the damping mode

Repeat Q6 determine the parameter condition for the overall reaction system and the damping
mode

Stability Analysis

A stable system 1s one where the controlled variable will always settle near the set
point. An unstable system is one where, under some conditions, the controlled
variable drifts away from the set point or breaks into oscillations that get larger and
larger until the system saturates on each side.

A

Set point

Set point

Stable system unstable system

Methods of Stability Test

AT



1-Determination the roots of equation

u
G Gz “r‘(

H
C= &R(S) + LU(S)
1+G,G,H 1+G,G,H
1+ G,G,H = 0(Characterstic Equation)
5-)E—5n)(s—13) ... =0 Im

v
]
a¥]

A linear control system 1s unstable if any roots of its characterstic equation are to the
right of imaginary axis.

If this equation has some roots with positive real parts, then the system is unstable, or
some roots equal to zero. the system is marginallv stable (oscillatorv). therefore it is

unstable. Then for stability the roots of characteristic equation must have negative

real parts.
Example:if
Ss +
G, = 1(}!M PI control
S
. 1 o
G, = Stirred tank
T 2s+1
H-= Mesuring element without lag

1+G=1+G,G,H=0
10(0.5

100055+ _
s(2s+1)

s(2s+1)+5s+10=0

25 +6s+10=0

s?+35+5=0

-3 fo_—
_$x9 20

2 2

[

AY



2-Routh's Method

a-Write the characterstic eqn. on the form of a polynomial shape:
as”+as" +a,s"+. a, =0 *)

Where a, 1s positive

It is necessary that a,, aj, a,,.... a1, a, be positive. If any coeff. 1s negative, the
system 1s unstable.

If all of the coeff. are positive, the system may be stable or unstable. Then apply the
next step.

b. Routh array:

Arrange the coeff. of eqn. (*) nto the first two rows of the Routh array shown

below.

Row

1 a, Qa» Aag ag
2 a; a3 as as
3 A A, Ay

4 B: B: Bs;
ntl |C; G G

d__A_ :alag_aoa?’ ) ;A_j 23134—3035 ‘ ‘__A :alaﬁ_aca?
1 a, - 2 —31 3 —a]
1 A, . Dy A,
C. = BA, -AB, C, = BA; - AB,
1 B, L B,
Examine the elements of the first column of the array ao, a1, A1, B1,C1.......... Wi

a) If any of these elements is negative, we have at least one root on the right of the imaginary axis
and the system is unstable.
b) The number of sign changes in the elements of the first column is equal to the number of root to
the right of the imaginary axis.

~The system is stable if all the elements in the first column of the array are positive

AA



Example:Given the characteristic eqn.
st + 35 4557 +4s +2=0

Solution:
Row A _3><5—4><1'1 _E
1 1 5 2 o 3 3
2 |3 4 o0  3x2-0
3 11/3 2 0 Ao=—3—=2
4 236 0 11'3x4—-6
B, = =236
502 s ’
C1:2.36><2_2
2.36

. The system 1s stable

Example: Apply the Routh s stability criterion to the equation:
st 257 H357 45 +5=0

Solution:

st 135

s 2 4
s2 1 5
S1 -6 0
So 5

The system is unstable.

A4



Example: A system has a characteristic equation s’ +9s” +26s+24=0. Using the
Routh criterion, show that the system 1s stable.

Solution

q(s) = s +9s* +265+24

Using the Routh-Hurwitz criterion,

sT11 26

s°| 9 24

s'126 0

01240

No sign change in 17 column then the system is stable.

Example: Consider the feedback control system with the characteristic equation.

K
C:(}
3

4257 +(2+K s+

Solution:

The corresponding Routh array can now be formed

Row
1 1 2+K, 0
2 2 K. 0
I
3 22+K)-K_/r; 0 0
2
4 K. /7 0 0

The elemmets of the first-column are positive except the third, which can be positive
or negative depending on K. and ;.

So state the stability
put 22+K)-K /7 K

(3

[

L0 =20Q2+K)>
If K. and tysatisfy the condition, then the system is atable
Critical stability

Put the third element=0

™




i.e 2(2 +K)= K.

3
For t=0.1
2(2+K_)=10K_= 4 =8K,
K.=05

1) if K_<0.5, the system is stable (all of the elements in the 1* column is +ve)

2) if K_ > 0.5, the third element of the 1*' column is negative. We have two sign

change in the elements of the first column.

.we have two roots to the right of imaginary axis.

Example: U
R T - J’X 1 C
K. (15 +1)(72s+1)
1
(T3s+1)

|
Ifz'1=1._r2=E.r3=

) | =

Determine K. for a stable system
Solution:
The char. Eqn.

9



I+K

C

(s+1)

! =0

onteindean
(s l)(25+1)(3s 1)

1 1
—s+1)(=s+1)+K_=0
Gs+DEs+D+K,

1, 3 | B
—s +—s+])(=s+1)+K_=0
(2 5 )(3 )+K.

i—£+'—g—i—§+1+KC =0
6 2 3 2 2
153+52—£S+1—Kc =0
6 6
Row
1 1/6 11/6
2 1 1+K,
3 10-K,_ 0

6
4 1+K,

Since Kc>0 . The system will be stable If 10-Kc>0

K_<10

Therfore K. must within the range 0<K.< 10

Example:

_'_
s

02s2+04s+1

Study the stability for K=2

Solution:
3 .
I+K (1+—)x2x 5 1 =0
S 02s"+04s+1
'I—KC(S_J)X i 2 0
S 025" +04s+1
_ sK_+3K 2
1_( c c)

X 3 — =
S 025" +04s+1
02s° +04s” +s+2sK_+6K_=0
025 +0.4s* + (1+ 2K )s + 6K_=0

qy

N

1

M




Row Row | For K.=2
1 0.2 12K, 1 02 5
2 0.4 6K. 2 0.4 12
3 A 0 3 2-24 0
4 B, 0 0.4
4 1.2 0

A _040+2K)-(12K,) 04+08K —1.2K, _04-04K,

! 0.4 0.4 0.4
04-04K_>0

The system 1s stable for K_ <1
B, =6K. = 6K_>0
And K_=>0

Therfore K. must within the range 0 <K< 1

Example: Designers have developed small, fast, vertical-take off fighter aircraft that are invisible
to radar. This aircraft concept uses quickly turning jet nozzles to steer the airplane. The control

system for the heading or direction control is shown in figure. Determine the maximum gain of the
system for stable operation.

+ controller (s+20) -
R(s I s o = > Y {5)
© Ik s(s +10)° Heading
Solution
_ k(s+20) _ ks + 20k ks + 20k

G(s)

s(s+10)2  s(s+20s+100) s° +20s” +100s
Characteristic equation,
1+GH =0
1 k5+301{ 120
57+ 20s" +100s
s° +20s® +100s +ks+20k =0
s* +20s% + (100 + k)s + 20k =0

The corresponding Routh array can now be formed

ay



Row
1 1 100+k
2 20 20k
3 a 0
4 b 0
20( ()—20k  20* 20k - 20k
. 0(100 +k)—20k _20*100+20k —20k _ 100
20 20
* 0 —
b= 2 20k -0 0k
a
The system 1s stable, no sign change in 1” column,
b::::-o
20k =0
k:ﬁ:>0

~.Range of k 1s must be k=0

Frequency Response Analysis

It is how the output response (amplitude, phase shift) change with the frequency of the input
sinusoidal. The input frequency is varied, and the output characteristics are computed or
represented as a function of the frequency. Frequency response analysis provides useful insights
into stability and performance characteristics of the control system. Figure below shows the
hypothetical experiment that is conducted.

Q¢



AVAY

Input

A

Output

System or Process

Y

Figure: How frequency response is defined.

Response of a first-Order System to a Sinusoidal Input

Consider a simple first-order system with a transfer function

V(s K
G(s) =2 - "o M
(s) T8+
Let F(t) be a sinusoidal input with amplitude A and frequency ;
F(t) = A sin (ot)
Then
= Aw
P(S) =3 B (2)
"+ o
Sub. F(s)from eq. (2) into eq. (1)

K Ao B ﬂp y Awm
. 7 7 . . .
s+l s+ s+l (s+jo)(s—jo)

Expand into partial fraction and find

C C C
V&) =——F ——+—
s+l/r, s+j0 s—jo
Compute the constants C;, C, and C; and find the inverse of laplace transform.
K Aot -K_Aor K A
Cl: g 3 . s C2: gpa £ 5 CBZ 3P2
T, +1 T, 0" +1 T, 0 +1
_ KIJ Aw Tp —tit Kp Aw 7, Kp A
y(t)=————e F ——F—5——cos(at) + 55 ——sin(at)
T, @ +1 7, +1 .o +

As t—o, then e ' '® —> 0, and the first term disappers.

q0



Thus, after a long time, the response of a first order system to a smusoidal mput 1s
given by:

_ K,Aor, K, A
V. (t) = ————cos(at) + —5——sin(ot)
r;ar-i—l z‘gm‘-i—l
B K, A . R
V() = —5—F5—[-@7, cos(mt) +sin(t)] (3)
r, o +1

Use the follwing trigonometric identity.

— @ I'p

ap _
¢ = tan 1P _ tan |

)= tan "' (- r,)

Then eq.(3) yield

V.()=—5—[(/T"@" + )sin(et + ¢)]
T, +1 Ve
KA
Voo (1) = ————=—=sin(ot + ¢) (4)
,\;‘ T, © +1

— ton—l(_,
gﬁ_‘[au (—ot,)

= Phase lag (5)

From eq.(4) and eq. (5). we observe that:
1) The ultimate response (also referred to as s.s.) of a first order system to a sin
mput is also a sinusoidal wave with the same frequency o.
2) The ratio of the output amplitude to the mput amplitude 1s called the
amplitude ratio” and 1s a function of the frequency:

(X3

K,A
720” +1 K
AR = amplitude ratio =42 =——
A \Tp@ +1

(6)

3) The output wave lags behind (phase lag) the input wave by an angle ¢>, which is a
function of the frequency w(see eq.(5)).
Input = A sin (w?)e

A
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~
v

Output = B sin (wi-¢)

It 1s the most important methods for stability analysis and used for design purposes
control system.

Suppose the mput to the process 1s sinusoidal signal

Where: A is amplitude

o 1s frequency (rad/sec) = %

T 1s period of one complete cycle (time)

Frequencv Response of a Second Order Svstem

For a second order system the transfer function is:
g

For a second order system the transfer function 1s:

K,
G(S): 7 7 .
s+ 2us+1

Put s=j® then
1) Amplitude Ratio

AR = s

J(1-7°0%) + Qure)’

)

Phase shift

2 to

¢ =tan " (—

)

Which 1s aphase lag since ¢ <0

2 2
|-t

Frequencv Response of a Pure Dead-Time Process
G(s)=e ¢
Put s=jm

L Gw) = g Tt

v



That 1s aphase lag smnce ¢ <0

Frequencv Response of a Feedback Controllers

1- Propertional controller:

The transfer function 1s G(s) = K,

2- PI controller:

The transfer function 1s G(s) =K_(1+ L)
;S

3- PD controller:

— . — rr o

aA



3- PD controller:
The transfer function 1s G(s) = K _(1 + 7 s)

AR =K I+ 7,0

The positive phase shift is called phase lead and implies that the controller output

lead the input.

4-PID controller:

The transfer function 1sG(s) = K _(1+ L Tp S)
;S

¢ is + or — ve depending on the values of to, T1and ®

Bode Diagrams
The bode diagrams consist of a pair of plots showing: 1. How the logarithm of the amplitude ratio
varies with frequency. 2. How the phase shift varies with frequency.

— = = ] - - -

R T e B R I

First Order system:

K
Amplitude ratio AR = ——2— (*)

[ 2 2
1+ T,

Phase lag=¢ = tan"'— T, @

AR 1 >
loc— =——log(l+ 7 @ kA
g K, 2 gl+7, %) (
The plot can be carried by considering its asymptotic behaviour as w—0 and as
®—»c0 . Then

1. As ®—0, then 7, @ — Oand from eq.(*)

log ;R —>0 or e = 1.This is the low-frequency asymptote. It is a horizontal line

p P

passing through the point AR _ 1.
KP

2. As o>, then 7, ® — w0and from eq.(**)
aq



logK— =—log7, @. This is the high frequency asymptote.
P

It 1s a line with slope -1 passing through the point % =lforr, @=1.

P
3. Atthe comer ro=1->w=0,
o1
Deomer — P = T_
P
: AR 1
The frequency @, 1s known as the corner frequnecy (and — =—=0.707)
K 2
P
The phase lag plot
aswo—0 ., ¢—=0
1 _ -
aso—>— . ¢—>tan”(~1)=-45°
TP
aso@—>» ., @¢—> tan'l(—oo) =-90°
10 20
- i Corner frequency
Low-frequency | )
AR L‘W L:] L1LJ
i | asy |'I'||.lU!L. 0
K | . o Fredaney
r \ High-frequency
TrucD‘ asymptote
g
0.1 20 5
3
a
¢ 0.01 —40
or 0
Phase lag  —45
90

0.01 0.1 ! 10 100
Ty () i

Figure:Bode diagram for first-order system.

Second —order system

K _
AR E ¢ =tan™ (w

- \/(1 — 0% + Quiow)? l-7

)

2
@




1.3
AR | ___——==— Nos
—— ———] o] 0.6
Kp 05 ——— t‘_\\‘h\‘\a 0.8
7
02 "“‘-.‘ﬂ "\\\.

p
\\\\ Asymprore]
0.05 -

—_— —

or
Phase lag 0

-135

/

- S

0.1 0.2 0.3 1.0 20 3.0 10,0
Tp(U —_—

Figure: Block diagram for second-order system

logK& — —%log[(‘l _ 2.2(92)2 + (2(,1‘!2'({))2]

P

1) as® — 0. then lcrgKg = —%log(l) =0

P
AR = 1stright line of a slope=0 (L.F.A)
KP
¢=tan" -0 =0
1
2) as ® — 0, then log?{—R = —%log(rm}d’ = —2log(re®) (H.F.A)
P

It 1s a straight line with a slope -2 passing through the pointAR=1 and to=1

3) o=o0. :l
-

Pure dead-time svstem

For the system
AR =1

p=-T40



aswo—>0 . ¢=0
915 o0

as @ —» 0

d _180

-360 I

1 10 100

Example: Two systems in series
' 6
G,(s) = and G, (s) =
=5 =5
The overall T.F. 1s
Gls)=
2s+1 5s+1
o 6
V1+40? \1+250°
logAR =log6 +log(AR), +log(AR),

AR

1- Region 1: From ®=0 to @ = 1 , slope of the overall asymptote =0+0=0

(1.e. horizontal * going through the point AR=1)

. 1
2- Region 2: From o =— to o =

. slope of the overall asymptote =0+(-1)=-1

2| =

going through the point AR=1., o=

| —

3- Region 3: From & > é slope of the overall asyptote =(-1)+(-1)=-2
For ¢
When aseo —>0.¢ ->0.¢, >0, >0
When as @ —> 0, ¢ — —90. ¢, — —90, ¢ — —180



Feedback Controller

1-Propertional controller
AR=K_¢=0

AR
10

()]



2-Propertional Integral controller (PI)
| 1
AR=K_|[l+——
\ (o1

L ) <0

o7,

¢=tan"' (-

1og<‘;R> - %mga +

C

1

2
(eo7;)

)

1- Low frequency asymptote

as o —0, > >>1 themllog(ﬁ) — —log(e@ ;)
(oo77) K

Consequently, the LFA 1s a straight line with slope=-1

C

a1
=tan~ ——=-90°
¢ 0

2- High frequency asymptote

1 AR . AR
as @ — 0, ——>0 then »>log(—)—>0 1e——>1
(077) K K

C C

HFA 1s a horizontal line at value % =1

C

For the ¢
asw—>0,¢—>-90
asw—>a., 9 —>—45
asw—>0,¢p—>0



100

10

Amplitude ratio

1
0.1
0 —
; -45
-90 —
0.01 0.1 | 10 100

W ——-
Figure Bode diagram for PI controller.

2-Propertional Derivative controller (PD)

AR =K_4/1+ i’
¢ =tan (@ rp) >0

1) Low frequency asymptote

as®—0, log(ﬁ) = llog(ré,(az) =0> AR =1 (L.F.A) slope=0

K. 2 K.
p=tan" ' 0=0°
2) High frequency asymptote

AR, 1 2 2 _

as @ —» o0, log(K—) = Elog(rnfo ) =log(rp@) (H.F.A) slope=+1

¢ =tan ' 0=90°

asw=0,¢=0

as =@, , ¢ =+45°

as =, ¢ —+90°



100
10
[=
E +1
L
—_ Ca
[-® o,
= s
< i . o=1/Tp
0.1
e WO —
-
g 45
&
By
0.01 0.1 1 10 100

(LT —

Figure: Bode diagram for PD controller.
3-Propertional Integral Derivative controller (PID)

AR 1 >
—=_ 1+ (rp0——
Ke (%o z‘I(oJ

It 'H L 1 wr

_ 1
¢ =tan" (1,0 ——)
)

1) as @ — 0 then AR =1+ (L)2 PI Controller
Kce ;0

2) as @ —» o then Kﬁ =41+ (rp®@)*  PD Controller
C

3) asw —:rl then Kﬁ =J1+(rpw—1)°

1 C

4) as a)—>L then 22 — 1+(1—L)2
o Kec N0

Frequencv Response of non-interacting capactine in sereies

G(3)=G;(5)xG,(s)xG5(8) X oerennnnne. x G, (s)
AR, = AR, xAR, x AR, x




rxampile. 500¢ Digram oI rily Lontrolier

1
G, (s)=10(1+—+5s
1(5) (10, )

1 .
s)=—=0.1 signal(—1
@, (s) = 0 gnal(-1)
@, (s) = é =0.2 signal(+1)
J
Kc10 N .
i =
90
+45
¢ 0 /
45 /
_90/ .
lJ’;T] ® l/{TD
Example:

Bode plots of open loop system

— Y(s)

G. Gy G,
Ysp(s) - (1+i) N 10 5o02s
\. s 0.1s+1 (2s+ (s +1) T
Yuls) _7
0.55+1 |

The Open loop T.F. of the feedback control

Gor =G.G; G, G,

Gy, =100K (1+—)—" :

With K.=4 and t;=0.25
- K=400

: e
rs 0.1s+1 ( s+1)(s+1) (0.5s+1)



Y
Y l+_
\\\‘/ ( 0.255)
i
slope| =1 h N 1
L ~ T N4l 'ATEE
slope = -2 N NN ~
AR N N 1
as 1
KG Y . \\\ \\ l:l-l-
slope = —3 \\\ N £+ 1
~ 1
S
" 25+ 1
slope = —4
\
o1 05 1 21 4 0
(R ST —— slope=—-3 _ _ __———
RSN SN SR S PPN
L ~ -~ e
45 T~ 0 AN
s g S L slope = —4
90 —===7 R
@ ~
-135 [T \
"“"-..,___‘ \\
180 ™~
Overall W
\

Example: Plot the B.D. for the open loop T.F. for the fig. below

s

Gy

G, U
R K. (1+7ps) é 1
| (s+1)%(0.1s+1)

Yu(s)

|
|
F 3

For Kc=10 and tp=0.5 the overall transfer function is

10(0.5s +1)e 10
(s+1)7(0.1s+1)
Overall Bode diagram

GoL(s) =

G,(s) = 1 5, L= 1., stright line slope=-1
Is+1 |
G,(s) = o, = 1 =1 stright line slope=-1
B s+ 1
G3(s)=0.55+1> w5 = 1 2 stright line slope=+1
0.5
G,(s) = o, = L _yp stright line slope=-1
0.1s+1 <01
Gy(s)=c 10 stright line slope=0

Y

!



Amplitude Ratio Curve Prediction

0-1 0 0
1-2 -1 -1 0 0 0
2-10 -1 -1 +1 0 0
10- -1 -1 +1 -1 0
Phase Lag Curve Prediction

rFa
&
ra
&
5 —=Z
| -
(?5' |} ———
#f
R
1 -
1 T 1
s+ 117 S 1
0.5 st o
AR, ”‘(/\
or "\_
.
AR overaln Slope =—2 — Slope =—1 “‘,._\
10 0l
Owerall curve with
derivative adtion
(.05 \, f

Overall curve without - Slope

derivalive action ]

(.01 | |
0.05 0. 1.5 1 A 10 S0
(1) i
fai)



L [ N B
45 —= =
b= |
_____ —-- S5 )
0 = 1
-.-—.._.__‘- hﬁﬂ"’-:‘-.“- 1
[~ "-"'--.! — s+ 1
_45 S I AT~ 0
<
\ ST N
< —00 I S N S
Owverall curve /r" - Owerall curve 1.
without derivative \ with derivative \‘:; 0
—~135 action action
\ ~ A\
\\ \
1 A
—180 A

Curve corresponding to 5 + | \ N \

has been added twice to form \ Y
225 — overall curve , >
1
=270 L
0.05 0.1 0.5 1 5 10 50
(L) —

iy

Figure: Block diagram for: (¢) Amplitude ratio; (») phase angle.

The Instrumentation and Control Diagrams

Set point

GController

Transmitter

Fluid
—_— ] | —

Orifice
(Flow Sensor)

Instrumentation

The example level-control problem had three critical pieces of instrumentation: a
sensor (measurement device), actuator (manipulated input device), and controller.
The sensor measured the tank level, the actuator changed the flow rate, and the
controller determined how much to vary the actuator, based on the sensor signal.
Each device in a control loop must supply or receive a signal from another device.




Sensors (Sensing Element)

A device, usually electronic, which detects a variable quantity and measures and
converts the measurement into a signal to be recorded elsewhere. A sensor is a device
that measures a physical quantity and converts it into a signal which can be read by
an observer or by an instrument.

There are many common sensors used for chemical processes. These include
temperature, level, pressure, flow, composition, and pH.

For example, a mercury thermometer converts the measured temperature info
expansion and confraction of a liquid which can be read on a calibrated glass tube.
A thermocouple converts temperature to an output voltage which can be read by
a voltmeter.

Control of unit operations
1) Level Control
* A level control 1s needed whenever there 1s a V/L or L/L interface
* Many smaller vessels are sized based on level control response time

LAH f1Ic
LAL

Figure 14.1 Liquid level control system

Example: A boiler drum with a conventional feedback control system is shown in
Fig. 14.2. The level of the boiling liquid 1s measured and used to adjust the feed water
flow rate.

This control system tends to be quite sensitive to rapid changes in the disturbance
variable, steam flow rate, as a result of the small liquid capacity of the boiler drum.
Rapid disturbance changes can occur as a result of steam demands made by
downstream processing unifs.
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Steam
Feedwater > i Boiler

drum

Hot
gas

Figure 14.2 The feedback control of the liquid level in a boiler drum.

The feedforward control scheme 1n Fig. 14.3 can provide better control of the liquid
level. Here the steam flow rate is measured, and the feedforward controller adjusts
the feedwater flow rate.

Feedtorward
Controller

___@6 __________ |

> Steam

Feedwater Boiler
drum

Hot
gas

Figure 14.3 The feedforward control of the liquid level in a boiler drum.

2) Pressure Control
* Pressure control 1s usually by venting a gas or vapor.
* In hydrocarbon processes, off-gas 1s often vented to fuel.

VY



In other processes, nitrogen may be brought in to maintain pressure and vented
via scrubbers.

Most common arrangement is direct venting.

Several vessels that are connected together may have a single pressure
controller.

T A
Figure 14.4 Pressure control system

3) Flow Control
* Most common arrangement 1s a control valve downstream of a pump or
compressor.

FIC

©., 9 £

Figure 14.5 Flowrate control system

Example:Vaporizer Flow Control
» Vaporizer flow control needs to prevent liquid accumulation.
* Hence use level controller to actuate heat input to the vaporizer and maintain a
constant iventory.
* Control of liquid flow 1n 1s easier than control of vapor flow out.

YYY



Vapor

FIC i ./
Lo Cd

(

v
¥

i Steam

Trap

Condensate

Figure 14.6 Vaporizer control system

4) Temperature Control: Single Stream

+ Heaters and coolers are usually controlled by manipulating the flow rate of the
hot or cold utility stream.

+ Final control element can be on inlet or outlet of utility side.

Hot or cold
utility

Process

—m e —m,— —,—,—,—————————

Figure 14.7 Temperature control system

Example: Heat exchangers temperature control
* Temperature control for an heat exchanger is usually by manipulating the flow
through a bypass.
* Only one side of an exchanger can be temperature controlled.
+ It i1s also common to see heat exchangers with temperature control on the
downstream heater and cooler.



______________

v
Figure 14.8 Temperature control of heat exchanger

Example: Air coolers temperature control
* Ambient air temperature varies, so air coolers are oversized and controlled by
manipulating a bypass.
* Alternatively, air cooler can use a variable speed motor. louvers or variable
pitch fans.

@@ ey . SPEED MOTOR @@ ey
‘ . CONTROL CIRCUIT | 7

(a) (b)

Figure 14.9 Temperature control of air coolers



Example: Temperature Control of CSTR

/——\
Feed ——
= @
Cooling :

~= @

Figure 14.10 Temperature control of CSTR

» Product

Distillation Control

++ Distillation control is a specialized subject in its own right.

*

++ In addition to controlling condenser pressure and level in the sump. a simple
distillation column has two degrees of freedom.

» Material balance (split) and energy balance (heat input or removed).

» Therefore needs two controllers.

» Therefore has the possibility that the controllers will interact and “fight”
each other.
%+ Side streams, mmtermediate condensers & reboilers, pump-arounds, etc. all add
extra complexity and degrees of freedom.

The Energy Balance (LQ) Distillation Column Control Structure

The LQ control structure 1s the most natural confrol structure for a simple distillation
column. This is because the separation i a distillation column occurs due to
successive condensation and vaporization of the counter-current vapour and liquid
streams flowing through the column. Adjusting the cold reflux, the source of



condensation, and the reboiler duty. the source of vaporization, is then a natural
choice for regulating the separation achieved in the column. The LQ control structure
shown in figure (14.11 a) is thus the most commonly applied distillation control
structure. It 1s also sometimes referred to as an energy balance structure as changing
L (cold reflux) or Q alters the energy balance across the column to affect the distillate
to bottoms product split.

Material Balance Distillation Column Control Structures

The other control structures are referred to as material balance structures as the
product split 1s directly adjusted by changing the distillate or bottoms stream flow
rate. The material balance structures are applied when a level loop for the LQ
structure would be meffective due to a very small product stream (D or B) flow rate.
Figure 14.11 b, ¢ and D show Schematics of DQ, LB and DB distillation column
control structures. The DQ structure is thus appropriate for columns with very large
reflux ratio (L/D > 4). The distillate stream flow 1s then a fraction of the reflux stream
so that the reflux drum level cannot be maintained using the distillate. The level must
then be controlled using the reflux. The LB structure is appropriate tor columns with
a small bottoms flow rate compared to the boil-up. The bottoms stream 1s then not

appropriate tor level confrol and the reboiler duty must be used instead.

to the steady state overall material balance constraint. In dynamics however, the
control structure may be used when the reflux and reboil are much larger

distillate and bottoms respectively.

W o ®—  ebo @

Condeser

o e |

i @KL
s T4

Q*@“’: Q —»(FO)r--1

Reboiler steam Reboiler steam

Bottoms Bottoms

VY

@ “ Reflux ' @ - Reflux @ 1:
@ Distillate -i—> Distillate

The DB

control structure 1s used very rarely as both D and B cannot be set independently due

than the



(c)LB
! —~--@--~-.

: (d) DB .
Condeser H
e Condcx;éf_i—’

5 eflux -
®: e @j Reflux ; :
e Distillate 4i—> —

Reboiler steam
O3 @

Bottoms

Reboiler steam

Figure 14.11 Schematics of LQ, DQ, LB and DB distillation column control
structures

Other Distillation Column Control Structure

Other variants of the basic control structure types include the L/D-Q, L/D-B and DQ/
B. In the first two structures the reflux ratio 1s adjusted for regulating the separation.
In the last structure the reboil ratio 1s adjusted. These control structures are illustrated

m Figure 14.12.

Note that when the reflux is adjusted in ratio with the distillate, the distillate stream can be used to
control the reflux drum level even as it may be a trickle compared to the reflux rate.



(a) /D-Q (b) L/D-B

! :
Condes%_i_’ Condeser

S=4

o | | @ J—
© 2 e

@

Reboiler steam

Bottoms

(c) D-Q/B

1
Condeserﬁ/_é_’

@--: Reflux i E
; =L,
_é;, Distillate

Bottoms

Figure 14.12 Schematics of L/D-Q, L/D-B, and D-Q/B distillation column control
structures.
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Batch Distillation
+ Reflux flow control adjusted based on temperature (used to infer composition)

A S

i + Intermittent
Steam drain
[ntermittent I Trap
charge

Figure 14.13 Batch distillation column control system

Heat Exchangers
Heat exchangers process used to transfer heat between two process streams. The flow
of these process streams is usually set elsewhere in the plant so that adjusting the

flowrate of one of the process streams to regulate the amount of heat transferred 1s
not possible.

To provide a control degree-of-freedom for regulating the heat transferred. a small
by-pass (~5-10%) of one of the process streams around the heat exchanger is
provided. The outlet temperature of this process stream or the other process stream
can be controlled by manipulating the by-pass rate. These two schemes are illustrated
in Figure 14.14. In the former, tight temperature control is possible as the amount of
heat transferred 1s governed by the bypass. In the latter, a thermal lag of the order of
0.5 to 2 minutes exists between the manipulated and controlled variable.
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Figure 14.14 By-pass control of process to process heat exchangers
(a) Controlling and bypassing hot stream (b) Controlling cold stream and bypassing
hot stream

Control of Miscellaneous Systems

Vapor Absorption Cycle

In addition to compression systems, refrigerant absorption systems are also applied
industrially. The absorption based refrigeration cycle and its control scheme is shown
in Figure 14.15. Ammonia (refrigerant) rich strong liquor 1s distilled at high pressure
to recover liquid ammonia as the distillate and ammonia lean weak liquor as the
bottoms. The liquid ammonia 1s fed to the evaporator where 1t absorbs heat from the
process stream to be chilled and evaporates. Vapor ammonia is absorbed by the
‘weak liquor’ water stream. The ‘strong liquor’ so formed is fed to the distillation
column to completed the closed circuit refrigerant loop. The temperature of the
chilled process stream 1s controlled by adjusting the level setpoint of the evaporator.
The heat transfer rate i1s thus varied by changing the area across which heat transfer
occurs. The evaporator level controller adjusts the distillate liquid ammonia flow. An
increase in the level of the evaporator implies an increase in the ammonia evaporation

rate so that the weak liquor rate is increased in ratio to absorb the ammonia vapours.
The strong liquor 1s cooled and collected in a surge drum. The level of the surge drum
1s not controlled. Liquid from the surge drum i1s pumped back to the distillation
column through a process-to-process heater that recovers heat from the hot ‘weak
liquor’ bottoms from the distillation column. The flow rate of the strong liquor to the
column 1s adjusted to maintain the column bottoms level. Also, the steam to the
reboiler 1s manipulated to maintain a tray temperature.
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